ﻻ يوجد ملخص باللغة العربية
Dirac particles have been notoriously difficult to confine. Implementing a curved space Dirac equation solver based on the quantum Lattice Boltzmann method, we show that curvature in a 2-D space can confine a portion of a charged, mass-less Dirac fermion wave-packet. This is equivalent to a finite probability of confining the Dirac fermion within a curved space region. We propose a general power law expression for the probability of confinement with respect to average spatial curvature for the studied geometry.
We predict from DFT based electronic structure calculations that a monolayer made up of Carbon and Arsenic atoms, with a chemical composition (CAs3) forms an energetically and dynamically stable system. The optimized geometry of the monolayer is slig
We obtain exact solutions to the two-dimensional (2D) Dirac equation for the one-dimensional Poschl-Teller potential which contains an asymmetry term. The eigenfunctions are expressed in terms of Heun confluent functions, while the eigenvalues are de
In a Dirac material we investigated the confining properties of massive and massless particles subjected to a potential well generated by a purely electrical potential, that is, an electric quantum dot. To achieve this in the most exhaustive way, we
We study excitonic effects in two-dimensional massless Dirac fermions with Coulomb interactions by solving the ladder approximation to the Bethe-Salpeter equation. It is found that the general 4-leg vertex has a power law behavior with the exponent g
The electron microscope has been a powerful, highly versatile workhorse in the fields of material and surface science, micro and nanotechnology, biology and geology, for nearly 80 years. The advent of two-dimensional materials opens new possibilities