ﻻ يوجد ملخص باللغة العربية
In the quest to develop spintronic logic, it was discovered that magnetoelectric switching results in lower energy and shorter switching time than other mechanisms. Magnetoelectric (ME) field due to exchange bias at the interface with a multi-ferroic (such as BiFeO3) is well suited for 180 degree switching of magnetization. The ME field is determined by the direction of canted magnetization in BiFeO3 which can point at an angle to the plane, to which voltage is applied. Dependence of switching time and the threshold of ME field on its angles was determined by micromagnetic simulations. Switching occurs by formation of a domain wall on the side of the nanomagnet on top of BFO and its propagation to the rest of the magnet. For in-plane magnetization, switching occurs over a wide range of angles and at all magnitudes of ME field above threshold. For out-of-plane magnetization failure occurs (with an exception of a narrow range of angles and magnitudes of ME field) due to the domain wall reflecting from the opposite end of the nanomagnet.
In this technical note, we address the comments on the energy estimates for Magnetoelectric Spin-orbit (MESO) Logic, a new logic device proposed by the authors. We provide an analytical derivation of the switching energy, and support it with time-dom
We propose the utilization of isotropic forward volume magneto-static spin waves in modern wave-based logic devices and suggest a concrete design for a spin-wave majority gate operating with these waves. We demonstrate by numerical simulations that t
We have studied the origin of switching (telegraph) noise at low temperature in lateral quantum structures defined electrostatically in GaAs/AlGaAs heterostructures by surface gates. The noise was measured by monitoring the conductance fluctuations a
Magnetic analogue of electronic gates are advantageous in many ways. There is no electron leakage, higher switching speed and more energy saving in a magnetic logic device compared to a semiconductor one. Recently, we proposed a magnetic vortex trans
We have measured the critical phase change conditions induced by electrical pulses in Ge2Sb2Te5 nanopillar phase change memory devices by constructing a comprehensive resistance map as a function of pulse parameters (width, amplitude and trailing edg