ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential and power-law renormalization in phonon-assisted tunneling

264   0   0.0 ( 0 )
 نشر من قبل Andisheh Khedri
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the spinless Anderson-Holstein model routinely employed to describe the basic physics of phonon-assisted tunneling in molecular devices. Our focus is on small to intermediate electron-phonon coupling; we complement a recent strong coupling study [Phys.~Rev.~B {87}, 075319 (2013)]. The entire crossover from the antiadiabatic regime to the adiabatic one is considered. Our analysis using the essentially analytical functional renormalization group approach backed-up by numerical renormalization group calculations goes beyond lowest order perturbation theory in the electron-phonon coupling. In particular, we provide an analytic expression for the effective tunneling coupling at particle-hole symmetry valid for all ratios of the bare tunnel coupling and the phonon frequency. It contains the exponential polaronic as well as the power-law renormalization; the latter can be traced back to x-ray edge-like physics. In the antiadiabatic and the adiabatic limit this expression agrees with the known ones obtained by mapping to an effective interacting resonant level model and lowest order perturbation theory, respectively. Away from particle-hole symmetry, we discuss and compare results from several approaches for the zero temperature electrical conductance of the model.



قيم البحث

اقرأ أيضاً

100 - K. Kikoin , M.N. Kiselev 2007
We consider the Kondo tunneling induced by multiphonon emission/absorption processes in magnetic molecular complexes with low-energy singlet-triplet spin gap and show that the number of assisting phonons may be changed by varying the Zeeman splitting of excited triplet state. As a result, the structure of multiphonon Kondo resonances may be scanned by means of magnetic field tuning.
Based on the dielectric continuum model, we calculated the phonon assisted tunneling (PAT) current of general double barrier resonant tunneling structures (DBRTSs) including both symmetric and antisymmetric ones. The results indicate that the four hi gher frequency interface phonon modes (especially the one which peaks at either interface of the emitter barrier) dominate the PAT processes, which increase the valley current and decrease the PVR of the DBRTSs. We show that an asymmetric structure can lead to improved performance.
We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.
289 - M. Gryglas , M. Baj , B. Chenaud 2004
We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the $I(V)$ characteristics measured at 30mK, the contribution of individual donors is resolved and the fin gerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.
We combine the results of terahertz time-domain spectroscopy with far-infrared transmission and reflectivity to obtain the conductivity of SrRuO_3 over an unprecedented continuous range in frequency, allowing us to characterize the approach to zero f requency as a function of temperature. We show that the conductivity follows a simple phenomenological form, with an analytic structure fundamentally different from that predicted by the standard theory of metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا