ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of phonon-assisted tunneling on the linear thermoelectric transport through molecular quantum dots

64   0   0.0 ( 0 )
 نشر من قبل Andisheh Khedri
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.

قيم البحث

اقرأ أيضاً

351 - J Loos , T Koch , A Alvermann 2009
To describe the interaction of molecular vibrations with electrons at a quantum dot contacted to metallic leads, we extend an analytical approach that we previously developed for the many-polaron problem. Our scheme is based on an incomplete variatio nal Lang-Firsov transformation, combined with a perturbative calculation of the electron-phonon self-energy in the framework of generalised Matsubara functions. This allows us to describe the system at weak to strong coupling and intermediate to large phonon frequencies. We present results for the quantum dot spectral function and for the kinetic coefficient that characterises the electron transport through the dot. With these results we critically examine the strengths and limitations of our approach, and discuss the properties of the molecular quantum dot in the context of polaron physics. We place particular emphasis on the importance of corrections to the concept of an antiadiabatic dot polaron suggested by the complete Lang-Firsov transformation.
225 - A. Khedri , T. A. Costi , V. Meden 2018
We employ the functional renormalization group to study the effects of phonon-assisted tunneling on the nonequilibrium steady-state transport through a single level molecular quantum dot coupled to electronic leads. Within the framework of the spinle ss Anderson-Holstein model, we focus on small to intermediate electron-phonon couplings, and we explore the evolution from the adiabatic to the antiadiabatic limit and also from the low-temperature non-perturbative regime to the high temperature perturbative one. We identify the phononic signatures in the bias-voltage dependence of the electrical current and the differential conductance. Considering a temperature gradient between the electronic leads, we further investigate the interplay between the transport of charge and heat. Within the linear response regime, we compare the temperature dependence of various thermoelectric coefficients to our earlier results obtained within the numerical renormalization group [Phys.~Rev.~B {bf 96}, 195156 (2017)]. Beyond the linear response regime, in the context of thermoelectric generators, we discuss the influence of molecular vibrations on the output power and the efficiency. We find that the molecular energy dissipation, which is inevitable in the presence of phonons, is significantly suppressed in the antiadiabatic limit resulting in the enhancement of the thermoelectric efficiency.
63 - T. Koch , H. Fehske , 2012
We consider transport through a vibrating molecular quantum dot contacted to macroscopic leads acting as charge reservoirs. In the equilibrium and nonequilibrium regime, we study the formation of a polaron-like transient state at the quantum dot for all ratios of the dot-lead coupling to the energy of the local phonon mode. We show that the polaronic renormalization of the dot-lead coupling is a possible mechanism for negative differential conductance. Moreover, the effective dot level follows one of the lead chemical potentials to enhance resonant transport, causing novel features in the inelastic tunneling signal. In the linear response regime, we investigate the impact of the electron-phonon interaction on the thermoelectrical properties of the quantum dot device.
We study thermoelectric transport through double quantum dots system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green function in the linear response regime. It is found that the thermoelectric coefficients are strongly dependent on the splitting of interdot coupling, the relative magnetic configurations and the spin polarization of leads. In particular, the thermoelectric efficiency can achieve considerable value in parallel configuration when the effective interdot coupling and tunnel coupling between QDs and the leads for spin-down electrons are small. Moreover, the thermoelectric efficiency increases with the intradot Coulomb interactions increasing and can reach very high value at an appropriate temperature. In the presence of the magnetic field, the spin accumulation in leads strongly suppresses the thermoelectric efficiency and a pure spin thermopower can be obtained.
Environmental noise usually hinders the efficiency of charge transport through coherent quantum systems; an exception is dephasing-assisted transport (DAT). We show that linear triple quantum dots in a transport configuration and subjected to pure de phasing exhibit DAT if the coupling to the drain reservoir exceeds a threshold. DAT occurs for arbitrarily weak dephasing and the enhancement can be directly controlled by the coupling to the drain. Moreover, for specific settings, the enhanced current is accompanied by a reduction in relative shot noise. We identify the quantum Zeno effect and long-distance tunnelling as underlying dynamical processes involved in dephasing-assisted and -suppressed transport. Our analytical results are obtained by using the density matrix formalism and the characteristic polynomial approach to full counting statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا