ترغب بنشر مسار تعليمي؟ اضغط هنا

Phonon-assisted tunneling in asymmetric resonant tunneling structures

212   0   0.0 ( 0 )
 نشر من قبل Barry C. Sanders
 تاريخ النشر 1998
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the dielectric continuum model, we calculated the phonon assisted tunneling (PAT) current of general double barrier resonant tunneling structures (DBRTSs) including both symmetric and antisymmetric ones. The results indicate that the four higher frequency interface phonon modes (especially the one which peaks at either interface of the emitter barrier) dominate the PAT processes, which increase the valley current and decrease the PVR of the DBRTSs. We show that an asymmetric structure can lead to improved performance.



قيم البحث

اقرأ أيضاً

289 - M. Gryglas , M. Baj , B. Chenaud 2004
We perform the investigations of the resonant tunneling via impurities embedded in the AlAs barrier of a single GaAs/AlGaAs heterostructure. In the $I(V)$ characteristics measured at 30mK, the contribution of individual donors is resolved and the fin gerprints of phonon assistance in the tunneling process are seen. The latter is confirmed by detailed analysis of the tunneling rates and the modeling of the resonant tunneling contribution to the current. Moreover, fluctuations of the local structure of the DOS (LDOS) and Fermi edge singularities are observed.
We present a self-consistent calculation, based on the global coherent tunnelling model, and show that structural asymmetry of double barrier resonant tunnelling structures significantly modifies the current-voltage characteristics compared to the sy mmetric structures. In particular, a suitably designed asymmetric structure can produce much larger peak current and absolute value of the negative differential conductivity than its commonly used symmetric counterpart.
We observe a series of sharp resonant features in the differential conductance of graphene-hexagonal boron nitride-graphene tunnel transistors over a wide range of bias voltages between $sim$10 and 200 mV. We attribute them to electron tunneling assi sted by the emission of phonons of well-defined energy. The bias voltages at which they occur are insensitive to the applied gate voltage and hence independent of the carrier densities in the graphene electrodes, so plasmonic effects can be ruled out. The phonon energies corresponding to the resonances are compared with the lattice dispersion curves of graphene-boron nitride heterostructures and are close to peaks in the single phonon density of states.
We predict that vertical transport in heterostructures formed by twisted graphene layers can exhibit a unique bistability mechanism. Intrinsically bistable $I$-$V$ characteristics arise from resonant tunneling and interlayer charge coupling, enabling multiple stable states in the sequential tunneling regime. We consider a simple trilayer architecture, with the outer layers acting as the source and drain and the middle layer floating. Under bias, the middle layer can be either resonant or non-resonant with the source and drain layers. The bistability is controlled by geometric device parameters easily tunable in experiments. The nanoscale architecture can enable uniquely fast switching times.
Transport in suspended metallic single wall carbon nanotubes in the presence of strong electron-electron interaction is investigated. We consider a tube of finite length and discuss the effects of the coupling of the electrons to the deformation pote ntial associated to the acoustic stretching and breathing modes. Treating the interacting electrons within the framework of the Luttinger liquid model, the low-energy spectrum of the coupled electron-phonon system is evaluated. The discreteness of the spectrum is reflected in the differential conductance which, as a function of the applied bias voltage, exhibits three distinct families of peaks. The height of the phonon-assisted peaks is very sensitive to the parameters. The phonon peaks are best observed when the system is close to the Wentzel-Bardeen singularity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا