ترغب بنشر مسار تعليمي؟ اضغط هنا

The optical+infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association

121   0   0.0 ( 0 )
 نشر من قبل Nicolas Lodieu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Lodieu




اسأل ChatGPT حول البحث

We present the results of photometric and spectroscopic follow-ups of the lowest mass member candidates in the nearest OB association, Upper Scorpius (5-10 Myr; 145+/-17 pc), with the Gran Telescopio de Canarias (GTC) and European Southern Observatory (ESO) Very Large Telescope (VLT). We confirm the membership of the large majority (>80%) of the candidates selected originally photometrically and astrometrically based on their spectroscopic features, weak equivalent widths of gravity-sensitive doublets, and radial velocities. Confirmed members follow a sequence over a wide magnitude range (J=17.0-19.3 mag) in several colour-magnitude diagrams with optical, near-, and mid-infrared photometry, and have near-infrared spectral types in the L1-L7 interval with likely masses below 15 Jupiter masses. We find that optical spectral types tend to be earlier than near-infrared spectral types by a few subclasses for spectral types later than M9. We investigate the behaviour of spectral indices defined in the literature as a function of spectral type and gravity by comparison with values reported in the literature for young and old dwarfs. We also derive effective temperatures in the 1900-1600K from fits of synthetic model-atmosphere spectra to the observed photometry but we caution the procedure carries large uncertainties. We determine bolometric corrections for young L dwarfs with ages of ~5-10 Myr (Upper Sco association) and find them similar in the J-band but larger by 0.1-0.4 mag in the K-band with respect to field L dwarfs. Finally, we discovered two faint young L dwarfs, VISTAJ1607-2146 (L4.5) and VISTAJ1611-2215 (L5) that have H$alpha$ emission and possible flux excesses at 4.5 microns, pointing towards the presence of accretion from a disk onto the central objects of mass below ~15 Jupiter masses at the age of 5-10 Myr.



قيم البحث

اقرأ أيضاً

365 - N. Lodieu 2021
We aim at identifying very low-mass isolated planetary-mass member candidates in the nearest OB association to the Sun, Upper Scorpius (145 pc; 5-10 Myr), to constrain the form and shape of the luminosity function and mass spectrum in this regime. We conducted a deep multi-band ($Y$=21.2, $J$=20.5, $Z$=22.0 mag) photometric survey of six square degrees in the central region of Upper Scorpius. We extend the current sequence of astrometric and spectroscopic members by about two magnitudes in $Y$ and one magnitude in $J$, reaching potentially T-type free-floating members in the association with predicted masses below 5 Jupiter masses, well into the planetary-mass regime. We extracted a sample of 57 candidates in this area and present infrared spectroscopy confirming two of them as young L-type members with characteristic spectral features of 10 Myr-old brown dwarfs. Among the 57 candidates, we highlight 10 new candidates fainter than the coolest members previously confirmed spectroscopically. We do not see any obvious sign of decrease in the mass spectrum of the association, suggesting that star processes can form substellar objects with masses down to 4-5 Jupiter masses.
210 - N. Lodieu 2013
We present the results of a deep ZYJ near-infrared survey of 13.5 square degrees in the Upper Scorpius (USco) OB association. We photometrically selected ~100 cluster member candidates with masses in the range 30-5 Jupiters, according to state-of-the -art evolutionary models. We identified 67 ZYJ candidates as bona-fide members, based on complementary photometry and astrometry. We also extracted five candidates detected with VISTA at YJ-only. One is excluded using deep optical z-band imaging, while two are likely non-members, and three remain as potential members. We conclude that the USco mass function is more likely decreasing in the planetary-mass regime (although a flat mass function cannot yet be discarded), consistent with surveys in other regions.
We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at sub-millimeter wavelengths. We fit power-law models to the dust surface density and CO $J$ = 3-2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an $R^{-1}$ dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be $sim3$ times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.
Flares are known to play an important role for the evolution of the atmospheres of young planets. In order to understand the evolution of planets, it is thus important to study the flare-activity of young stars. This is particularly the case for youn g M-stars, because they are very active. We study photometrically and spectroscopically the highly active M-star 2MASS J16111534-1757214. We show that it is a member of the Upper Sco OB association, which has an age of 5-10 Myrs. We also re-evaluate the status of other bona-fide M-stars in this region and identify 42 members. Analyzing the K2-light curves, we find that 2MASS J16111534-1757214 has, on average, one super-flare with E > 1.0E35 erg every 620 hours, and one with E >1.0E34 erg every 52 hours. Although this is the most active M-star in the Upper Sco association, the power-law index of its flare-distribution is similar to that of other M-stars in this region. 2MASS J16111534-1757214 as well as other M-stars in this region show a broken power-law distribution in the flare-frequency diagram. Flares larger than E >3E34 erg have a power-law index beta=-1.3+/-0.1 and flares smaller than that beta=-0.8+/-0.1. We furthermore conclude that the flare-energy distribution for young M-stars is not that different from solar-like stars.
222 - P. Dawson , A. Scholz , T.P. Ray 2014
Spectroscopic follow-up is a pre-requisite for studies of the formation and early evolution of brown dwarfs. Here we present IRTF/SpeX near-infrared spectroscopy of 30 candidate members of the young Upper Scorpius association, selected from our previ ous survey work. All 24 high confidence members are confirmed as young very low mass objects with spectral types from M5 to L1, 15-20 of them are likely brown dwarfs. This high yield confirms that brown dwarfs in Upper Scorpius can be identified from photometry and proper motions alone, with negligible contamination from field objects (<4%). Out of the 6 candidates with lower confidence, 5 might still be young very low mass members of Upper Scorpius, according to our spectroscopy. We demonstrate that some very low mass class II objects exhibit radically different near infrared (0.6 - 2.5micron) spectra from class III objects, with strong excess emission increasing towards longer wavelengths and partially filled in features at wavelengths shorter than 1.25micron. These characteristics can obscure the contribution of the photosphere within such spectra. Therefore, we caution that near infrared derived spectral types for objects with discs may be unreliable. Furthermore, we show that the same characteristics can be seen to some extent in all class II and even a significant fraction of class III objects (~40%), indicating that some of them are still surrounded by traces of dust and gas. Based on our spectra, we select a sample of objects with spectral types of M5 to L1, whose near-infrared emission represents the photosphere only. We recommend the use of these objects as spectroscopic templates for young brown dwarfs in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا