ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Circumstellar Disk Sizes in the Upper Scorpius OB Association with ALMA

246   0   0.0 ( 0 )
 نشر من قبل Scott Barenfeld
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present detailed modeling of the spatial distributions of gas and dust in 57 circumstellar disks in the Upper Scorpius OB Association observed with ALMA at sub-millimeter wavelengths. We fit power-law models to the dust surface density and CO $J$ = 3-2 surface brightness to measure the radial extent of dust and gas in these disks. We found that these disks are extremely compact: the 25 highest signal-to-noise disks have a median dust outer radius of 21 au, assuming an $R^{-1}$ dust surface density profile. Our lack of CO detections in the majority of our sample is consistent with these small disk sizes assuming the dust and CO share the same spatial distribution. Of seven disks in our sample with well-constrained dust and CO radii, four appear to be more extended in CO, although this may simply be due to higher optical depth of the CO. Comparison of the Upper Sco results with recent analyses of disks in Taurus, Ophiuchus, and Lupus suggests that the dust disks in Upper Sco may be $sim3$ times smaller in size than their younger counterparts, although we caution that a more uniform analysis of the data across all regions is needed. We discuss the implications of these results for disk evolution.



قيم البحث

اقرأ أيضاً

Proper motion measurements of the cool and ultracool populations in the Upper Scorpius OB association are crucial to confirm membership and to identify possible run-away objects. We cross-match samples of photometrically selected and spectroscopica lly confirmed cool and ultracool (K5<SpT<M8.5) candidate members in the Upper Scorpius OB association using the literature and the USNO-B and the UCAC2 catalogues. 251 of these objects have a USNO-B and/or UCAC2 counterpart with proper motion measurements. A significant fraction (19 objects, 7.6+-1.8%) of spectroscopically confirmed young objects show discrepant proper motion. They must either belong to unidentified coincident foreground associations, or originate from neighboring star forming regions or have recently experienced dynamical interactions within the association. The observed accretor and disc frequencies are lower among outliers, but with only 19 objects it is unreliable to draw firm statistical conclusions. Finally, we note that transverse velocities of very low mass members are indistinguishable from those of low mass members within 4km/s
We present a CO(2-1) and 1240 um continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.5-1 arcsec with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ~10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3-sigma) CO detections. Twenty disks were detected in the continuum at the >3-sigma level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broad-band spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.
Flares are known to play an important role for the evolution of the atmospheres of young planets. In order to understand the evolution of planets, it is thus important to study the flare-activity of young stars. This is particularly the case for youn g M-stars, because they are very active. We study photometrically and spectroscopically the highly active M-star 2MASS J16111534-1757214. We show that it is a member of the Upper Sco OB association, which has an age of 5-10 Myrs. We also re-evaluate the status of other bona-fide M-stars in this region and identify 42 members. Analyzing the K2-light curves, we find that 2MASS J16111534-1757214 has, on average, one super-flare with E > 1.0E35 erg every 620 hours, and one with E >1.0E34 erg every 52 hours. Although this is the most active M-star in the Upper Sco association, the power-law index of its flare-distribution is similar to that of other M-stars in this region. 2MASS J16111534-1757214 as well as other M-stars in this region show a broken power-law distribution in the flare-frequency diagram. Flares larger than E >3E34 erg have a power-law index beta=-1.3+/-0.1 and flares smaller than that beta=-0.8+/-0.1. We furthermore conclude that the flare-energy distribution for young M-stars is not that different from solar-like stars.
We aim at constraining evolutionary models at low mass and young ages by identifying interesting transiting system members of the nearest OB association to the Sun, Upper Scorpius, targeted by the Kepler mission. We produced light curves for M dwar f members of the USco region surveyed during the second campaign of the Kepler K2 mission. We identified by eye a transiting system, UScoJ161630.68-251220.1 (=EPIC203710387) with a combined spectral type of M5.25 whose photometric, astrometric, and spectroscopic properties makes it a member of USco. We conducted an extensive photometric and spectroscopic follow-up of this transiting system with a suite of telescopes and instruments to characterise the properties of each component of the system. We calculated a transit duration of about 2.42 hours occuring every 2.88 days with a slight difference in transit depth and phase between the two components. We estimated a mass ratio of 0.922+/-0.015 from the semi-amplitudes of the radial velocity curves for each component. We derived masses of 0.091+/-0.005 Msun and 0.084+/-0.004 Msun,radii of 0.388+/-0.008 Rsun and 0.380+/-0.008 Rsun, luminosities of log(L/Lsun)=-2.020 (-0.121+0.099) dex and -2.032 (-0.121+0.099) dex, and effective temperatures of 2901 (-172+199) K and 2908 (-172+199) K for the primary and secondary, respectively. We present a complete photometric and radial velocity characterisation of the least massive double-line eclipsing binary system in the young USco association with two components close to the stellar/substellar limit. This system fills in a gap between the least massive eclipsing binaries in the low-mass and substellar regimes at young ages and represents an important addition to constrain evolutionary models at young ages.
We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (~100-200 pc). Using an X-ray, proper motion and color-magnitude selected sample, we obtained spectra for 361 stars , for which we report spectral classifications and Li and Halpha equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (~0.7-1.3 Msun) members of Sco-Cen. We investigated the star-formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar disks in our sample using WISE infrared data and find a protoplanetary disk fraction for K-type stars of 4.4$^{+1.6}_{-0.9}$% for Upper Centaurus-Lupus and Lower Centaurus-Crux at ~16 Myr and 9.0$^{+4.0}_{-2.2}$% for Upper Scorpius at ~10 Myr. These data are consistent with a protoplanetary disk e-folding timescale of ~4-5 Myr for ~1 Msun stars, twice that previously quoted (Mamajek 2009), but consistent with the Bell et al. revised age scale of young clusters. Finally, we construct an age map of Scorpius-Centaurus which clearly reveals substructure consisting of concentrations of younger and older stars. We find evidence for strong age gradients within all three subgroups. None of the subgroups are consistent with being simple, coeval populations which formed in single bursts, but likely represents a multitude of smaller star formation episodes of hundreds to tens of stars each.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا