ﻻ يوجد ملخص باللغة العربية
We introduce a novel method to train agents of reinforcement learning (RL) by sharing knowledge in a way similar to the concept of using a book. The recorded information in the form of a book is the main means by which humans learn knowledge. Nevertheless, the conventional deep RL methods have mainly focused either on experiential learning where the agent learns through interactions with the environment from the start or on imitation learning that tries to mimic the teacher. Contrary to these, our proposed book learning shares key information among different agents in a book-like manner by delving into the following two characteristic features: (1) By defining the linguistic function, input states can be clustered semantically into a relatively small number of core clusters, which are forwarded to other RL agents in a prescribed manner. (2) By defining state priorities and the contents for recording, core experiences can be selected and stored in a small container. We call this container as `BOOK. Our method learns hundreds to thousand times faster than the conventional methods by learning only a handful of core cluster information, which shows that deep RL agents can effectively learn through the shared knowledge from other agents.
The growth in online goods delivery is causing a dramatic surge in urban vehicle traffic from last-mile deliveries. On the other hand, ride-sharing has been on the rise with the success of ride-sharing platforms and increased research on using autono
Sepsis is a leading cause of mortality in intensive care units and costs hospitals billions annually. Treating a septic patient is highly challenging, because individual patients respond very differently to medical interventions and there is no unive
Deep reinforcement learning (DRL) methods such as the Deep Q-Network (DQN) have achieved state-of-the-art results in a variety of challenging, high-dimensional domains. This success is mainly attributed to the power of deep neural networks to learn r
This is a brief technical note to clarify some of the issues with applying the application of the algorithm posterior sampling for reinforcement learning (PSRL) in environments without fixed episodes. In particular, this paper aims to: - Review som
Although different learning systems are coordinated to afford complex behavior, little is known about how this occurs. This article describes a theoretical framework that specifies how complex behaviors that might be thought to require error-driven l