ترغب بنشر مسار تعليمي؟ اضغط هنا

Genuine high-dimensional quantum steering

385   0   0.0 ( 0 )
 نشر من قبل S\u00e9bastien Designolle
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-dimensional quantum entanglement can give rise to stronger forms of nonlocal correlations compared to qubit systems, offering significant advantages for quantum information processing. Certifying these stronger correlations, however, remains an important challenge, in particular in an experimental setting. Here we theoretically formalise and experimentally demonstrate a notion of genuine high-dimensional quantum steering. We show that high-dimensional entanglement, as quantified by the Schmidt number, can lead to a stronger form of steering, provably impossible to obtain via entanglement in lower dimensions. Exploiting the connection between steering and incompatibility of quantum measurements, we derive simple two-setting steering inequalities, the violation of which guarantees the presence of genuine high-dimensional steering, and hence certifies a lower bound on the Schmidt number in a one-sided device-independent setting. We report the experimental violation of these inequalities using macro-pixel photon-pair entanglement certifying genuine high-dimensional steering. In particular, using an entangled state in dimension $d=31$, our data certifies a minimum Schmidt number of $n=15$.


قيم البحث

اقرأ أيضاً

81 - Guang Ping He 2017
Quantum steering means that in some bipartite quantum systems, the local measurements on one side can determine the state of the other side. Here we show that in high-dimensional systems, there exists a specific entangled state which can display a ki nd of chaos effect when being adopted for steering. That is, a subtle difference in the measurement results on one side can steer the other side into completely orthogonal states. Moreover, by expanding the result to infinite-dimensional systems, we find two sets of states for which, contrary to common belief, even though their density matrices approach being identical, the steering between them is impossible. This property makes them very useful for quantum cryptography.
Within the hierarchy of inseparable quantum correlations, Einstein-Podolsky-Rosen steering is distinguished from both entanglement and Bell nonlocality by its asymmetry -- there exist conditions where the steering phenomenon changes from being observ able to not observable, simply by exchanging the role of the two measuring parties. Whilst this one-way steering feature has been previously demonstrated for the restricted class of Gaussian measurements, for the general case of positive-operator-valued measures even its theoretical existence has only recently been settled. Here, we prove, and then experimentally observe, the one-way steerability of an experimentally practical class of entangled states in this general setting. As well as its foundational significance, the demonstration of fundamentally asymmetric nonlocality also has practical implications for the distribution of the trust in quantum communication networks.
368 - Guangming Jiang , Xiaohua Wu , 2021
According to the fundamental idea that a steering inequality can be constructed by just considering the measurements performed by Bob, and from the definitions of steering from Alice to Bob, a general scheme for designing linear steering inequalities (LSIs) is developed to detect the genuine multipartite two-way steerability. A special class of LSIs, which are constructed from the Bell operators, are introduced. Furthermore, several other types of LSIs are also considered.
Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long dista nces is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least $14.8pm0.1$ dB of added loss, equivalent to approximately $80$ km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.
The development of large-scale quantum networks promises to bring a multitude of technological applications as well as shed light on foundational topics, such as quantum nonlocality. It is particularly interesting to consider scenarios where sources within the network are statistically independent, which leads to so-called network nonlocality, even when parties perform fixed measurements. Here we promote certain parties to be trusted and introduce the notion of network steering and network local hidden state (NLHS) models within this paradigm of independent sources. In one direction, we show how results from Bell nonlocality and quantum steering can be used to demonstrate network steering. We further show that it is a genuinely novel effect, by exhibiting unsteerable states that nevertheless demonstrate network steering, based upon entanglement swapping, yielding a form of activation. On the other hand, we provide no-go results for network steering in a large class of scenarios, by explicitly constructing NLHS models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا