ﻻ يوجد ملخص باللغة العربية
This paper numerically investigates the shear flow between double concentric spherical boundaries rotating differentially, so-called spherical Couette flow, under unstable thermal stratification, focusing on the boundary of the axisymmetric/non-axisymmetric transition in wide gap cases where the inner radius is comparable to the clearance width. While the transition of SCF has been confirmed experimentally in cases without thermal factor, insufficient knowledge on SCF subject to thermal instability, related to geophysical problems especially in wide gap cases, has been accumulated mainly based on numerical analysis; our motivation is to bridge the knowledge gap by a parameter extension. We reconfirm that the transition under no thermal effect is initiated by a disturbance visualised as a spiral pattern with n arms extending from the equatorial zone to the pole in each hemisphere, at the critical Reynolds number, Recr, as previously reported. With increasing thermal factor, the buoyancy effect assists the system rotation to trigger a transition towards non-axisymmetric states, resulting in a relative decrease of Recr. This is in contrast with the result that the system rotation apparently suppresses via Coriolis effect the transition to the thermally convective states at low Reynolds numbers. The present study elucidates that the existence of the axisymmetric state is restricted within a closed area in the extended parameter space, along the boundary of which the spiral patterns observed experimentally in SCF continually connect to the classical spherical Benard convective states.
Equilibrium, traveling wave, and periodic orbit solutions of pipe, channel, and plane Couette flows can now be computed precisely at Reynolds numbers above the onset of turbulence. These invariant solutions capture the complex dynamics of wall-bounde
Motivated by recent experimental and numerical studies of coherent structures in wall-bounded shear flows, we initiate a systematic exploration of the hierarchy of unstable invariant solutions of the Navier-Stokes equations. We construct a dynamical,
While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field that sustains turbulence, nonlinearity is also known to play an essential role. The goal of this study is to better unders
In order to explore the magnetostrophic regime expected for planetary cores, experiments have been conducted in a rotating sphere filled with liquid sodium, with an imposed dipolar magnetic field (the DTS setup). The field is produced by a permanent
Numerical simulation of Electroconvective vortices behavior in the presence of Couette flow between two infinitely long electrodes is investigated. The two-relaxation-time Lattice Boltzmann Method with fast Poisson solver solves for the spatiotempora