ﻻ يوجد ملخص باللغة العربية
We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, spontaneously elongating in horizontal direction. Smaller drops elongate into localized states that oscillate with half of the vibration frequency. Larger drops evolve by transforming into a snake-like structure with gradually increasing length. The worm state is long-lasting with a potential to fragmentat into smaller drops.
We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibra
Using quantum Monte Carlo methods we have studied dilute Bose-Bose mixtures with attractive interspecies interaction in the limit of zero temperature. The calculations are exact within some statistical noise and thus go beyond previous perturbative e
Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here we show that an analogous long-range i
A previously unreported regime of type III intermittency is observed in a vertically vibrated milliliter-sized liquid drop submerged in a more viscous and less dense immiscible fluid layer supported by a hydrophobic solid plate. As the vibration ampl
We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pear-like shape under the action of the elastic stresses exerted by the actin comet. We solve this free boundary problem and calculate the