ﻻ يوجد ملخص باللغة العربية
Using quantum Monte Carlo methods we have studied dilute Bose-Bose mixtures with attractive interspecies interaction in the limit of zero temperature. The calculations are exact within some statistical noise and thus go beyond previous perturbative estimations. By tuning the intensity of the attraction, we observe the evolution of an $N$-particle system from a gas to a self-bound liquid drop. This observation agrees with recent experimental findings and allows for the study of an ultradilute liquid never observed before in Nature.
We show that ultradilute quantum liquids can be formed with ultracold bosonic dipolar atoms in a bilayer geometry. Contrary to previous realizations of ultradilute liquids, there is no need of stabilizing the system with an additional repulsive short
We have studied dilute Bose-Bose mixtures of atoms with attractive interspecies and repulsive intraspecies interactions using quantum Monte Carlo methods at $T=0$. Using a number of models for interactions, we determine the range of validity of the u
The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interactio
We present and analyze a minimal hydrodynamic model of a vertically vibrated liquid drop that undergoes dynamic shape transformations. In agreement with experiments, a circular lens-shaped drop is unstable above a critical vibration amplitude, sponta
Saturation properties are directly linked to the short-range scale of the two-body interaction of the particles. The case of helium is particular, from one hand the two-body potential has a strong repulsion at short distances. On the other hand, the