ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft Listeria: actin-based propulsion of liquid drops

63   0   0.0 ( 0 )
 نشر من قبل Otger Camp\\`as
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pear-like shape under the action of the elastic stresses exerted by the actin comet. We solve this free boundary problem and calculate the drop shape taking into account the elasticity of the actin gel and the variation of the polymerization velocity with normal stress. The pressure balance on the liquid drop imposes a zero propulsive force if gradients in surface tension or internal pressure are not taken into account. Quantitative parameters of actin polymerization are obtained by fitting theory to experiment.

قيم البحث

اقرأ أيضاً

We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show, both analytically and by numerical si mulation, that the equations of motion for an active nematic drop possess a simple self-propelling solution, with no traction on the solid surface and in which the direction of motion is controlled by the winding of the nematic director field across the drop height. The physics underlying this mode of motion has the same origins as that giving rise to the zero viscosity observed in bacterial suspensions. This topologically protected tractionless self-propusion provides a robust physical mechanism for efficient cell migration in crowded environments like tissues.
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 seconds. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a 3D space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature rather than a fixed torque.
Sessile drops of soft hydrogels were vibrated vertically by subjecting them to a mechanically induced Gaussian white noise. Power spectra of the surface fluctuation of the gel allowed identification of its resonant frequency that decreases with their mass, but increases with its shear modulus. The principal resonant frequencies of the spheroidal modes of the gel of shear moduli ranging from 55 Pa to 290 Pa were closest to the lowest Rayleigh mode of vibration of a drop of pure water. These observations coupled with the fact that the resonance frequency varies inversely as the square root of the mass in all cases suggest that they primarily correspond to the capillary (or a pseudo-capillary) mode of drop vibration. The contact angles of the gel drops also increase with the modulus of the gel. When the resonance frequencies are corrected for the wetting angles, and plotted against the fundamental frequency scale (gamma/mu)^0.5, all the data collapse nicely on a single plot provided that the latter is shifted by a shear modulus dependent factor (1+mu.L/gamma). A length scale L, independent of both the modulus and the mass of the drop emerges from such a fit.
When a block made of an elastomer is subjected to large shear, its surface remains flat. When a block of biological soft tissue is subjected to large shear, it is likely that its surface in the plane of shear will buckle (apparition of wrinkles). One factor that distinguishes soft tissues from rubber-like solids is the presence -- sometimes visible to the naked eye -- of oriented collagen fibre bundles, which are stiffer than the elastin matrix into which they are embedded but are nonetheless flexible and extensible. Here we show that the simplest model of isotropic nonlinear elasticity, namely the incompressible neo-Hookean model, suffers surface instability in shear only at tremendous amounts of shear, i.e., above 3.09, which corresponds to a 72 degrees angle of shear. Next we incorporate a family of parallel fibres in the model and show that the resulting solid can be either reinforced or strongly weakened with respect to surface instability, depending on the angle between the fibres and the direction of shear, and depending on the ratio E/mu between the stiffness of the fibres and that of the matrix. For this ratio we use values compatible with experimental data on soft tissues. Broadly speaking, we find that the surface becomes rapidly unstable when the shear takes place against the fibres, and that as E/mu increases, so does the sector of angles where early instability is expected to occur.
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equati on, the porous medium is characterised by a single length scale $ell$ --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of $ell$. We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit $elltoinfty$, corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, $ellto 0$, corresponding to a space filling gel, is singular and not equivalent to Darcys equation, which cannot account for self-propulsion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا