ﻻ يوجد ملخص باللغة العربية
Aims. Our goal is to characterize the intermediate age, detached shell carbon star U Antliae morphologically and physically in order to study the mass-loss evolution after a possible thermal pulse. Methods. High spatial resolution ALMA observations of unprecedented quality in thermal CO lines allow us to derive first critical spatial and temporal scales and constrain modeling efforts to estimate mass-loss rates for both the present day as well as the ejection period of the detached shell. Results. The detached shell is remarkably thin, overall spherically symmetric, and shows a barely resolved filamentary substructure possibly caused by instabilities in the interaction zone of winds with different outflow velocities. The expansion age of the detached shell is of the order of 2700 years and its overall width indicates a high expansion-velocity and high mass-loss period of only a few hundred years at an average mass-loss rate of $approx$ 10$^{-5}$ $M_odot$ yr$^{-1}$. The post-high-mass-loss-rate-epoch evolution of U Ant shows a significant decline to a substantially lower gas expansion velocity and a mass-loss rate amounting to 4$times$10$^{-8}$ $M_odot$ yr$^{-1}$, at present being consistent with evolutionary changes as predicted for the period between thermal pulses.
We present the highest resolution single-dish submillimetre observations of the detached shell source U Antliae to date. The observations were obtained at $450~micron$ and $850~micron$ with SCUBA-2 instrument on the James Clerk Maxwell Telescope as p
Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the
Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the ne
The sunspot penumbra comprises numerous thin, radially elongated filaments that are central for heat transport within the penumbra, but whose structure is still not clear. To investigate the fine-scale structure of these filaments, we perform a depth
We report the detection of the HI line at 21 cm in the direction of alpha Ori with the Nancay Radiotelescope and with the Very Large Array. The observations confirm the previous detection of HI emission centered on alpha Ori, but additionally reveal