ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of CI line emission from the detached CO shell of the AGB star R Sculptoris

96   0   0.0 ( 0 )
 نشر من قبل Hans Olofsson
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stars on the asymptotic giant branch (AGB) lose substantial amounts of matter, to the extent that they are important for the chemical evolution of, and dust production in, the universe. The mass loss is believed to increase gradually with age on the AGB, but it may also occur in the form of bursts, possibly related to the thermal pulsing phenomenon. Detached, geometrically thin, CO shells around carbon stars are good signposts of brief and intense mass ejection. We aim to put further constraints on the physical properties of detached CO shells around AGB stars. The photodissociation of CO and other carbon-bearing species in the shells leads to the possibility of detecting lines from neutral carbon. We have therefore searched for the CI($^3P_1-,^3P_0$) line at 492 GHz towards two carbon stars, S Sct and R Scl, with detached CO shells of different ages, about 8000 and 2300 years, respectively. The CI($^3P_1-,^3P_0$) line was detected towards R Scl. The line intensity is dominated by emission from the detached shell. The detection is at a level consistent with the neutral carbon coming from the full photodissociation of all species except CO, and with only limited photoionisation of carbon. The best fit to the observed $^{12}$CO and $^{13}$CO line intensities, assuming a homogeneous shell, is obtained for a shell mass of about 0.002 $M_odot$, a temperature of about 100 K, and a CO abundance with respect to H$_2$ of 10$^{-3}$. The estimated CI/CO abundance ratio is about 0.3 for the best-fit model. However, a number of arguments point in the direction of a clumpy medium, and a viable interpretation of the data within such a context is provided.

قيم البحث

اقرأ أيضاً

We present the detection of neutral atomic carbon CI(3 P1 - 3 P0 ) line emission towards omi Cet. This is the first time that CI is detected in the envelope around an oxygen-rich M-type asymptotic giant branch (AGB) star. We also confirm the previous ly tentative CI detection around V Hya, a carbon-rich AGB star. As one of the main photodissociation products of parent species in the circumstellar envelope (CSE) around evolved stars, CI can be used to trace sources of ultraviolet (UV) radiation in CSEs. The observed flux density towards omi Cet can be reproduced by a shell with a peak atomic fractional abundance of $2.4 times 10^{-5}$ predicted based on a simple chemical model where CO is dissociated by the interstellar radiation field. However, the CI emission is shifted by $sim$ 4 km/s from the stellar velocity. Based on this velocity shift, we suggest that the detected CI emission towards omi Cet potentially arises from a compact region near its hot binary companion. The velocity shift could, therefore, be the result of the orbital velocity of the binary companion around omi Cet. In this case, the CI column density is estimated to be $1.1 times 10^{19}$ cm$^{-2}$. This would imply that strong UV radiation from the companion and/or accretion of matter between two stars is most likely the origin of the CI enhancement. However, this hypothesis can be confirmed by high-angular resolution observations.
For the carbon AGB star R Sculptoris, the uncertain distance significantly affects the interpretation of observations regarding the evolution of the stellar mass loss during and after the most recent thermal pulse. We aim to provide a new, independen t measurement of the distance to R Sculptoris, reducing the absolute uncertainty of the distance estimate to this source. R Scl is a semi-regular pulsating star, surrounded by a thin shell of dust and gas created during a thermal pulse approximately 2000 years ago. The stellar light is scattered by the dust particles in the shell at a radius of 19 arcsec. The variation in the stellar light affects the amount of dust-scattered light with the same period and amplitude ratio, but with a phase lag that depends on the absolute size of the shell. We measured this phase lag by observing the star R Scl and the dust-scattered stellar light from the shell at five epochs between June - December 2017. By observing in polarised light, we imaged the shell in the plane of the sky, removing any uncertainty due to geometrical effects. The phase lag gives the absolute size of the shell, and together with the angular size of the shell directly gives the absolute distance to R Sculptoris. We measured a phase lag between the stellar variations and the variation in the shell of 40.0 +/- 4.0 days. The angular size of the shell is measured to be 19.1 arcsec +/- 0.7 arcsec. Combined, this gives an absolute distance to R Sculptoris of 361 +/- 44 pc. We independently determined the absolute distance to R Scl with an uncertainty of 12%. The estimated distance is consistent with previous estimates, but is one of the most accurate distances to the source to date. In the future, using the variations in polarised, dust-scattered stellar light, may offer an independent possibility to measure reliable distances to AGB stars.
Context: Low- and intermediate-mass stars lose most of their stellar mass at the end of their lives on the asymptotic giant branch (AGB). Determining gas and dust mass-loss rates (MLRs) is important in quantifying the contribution of evolved stars to the enrichment of the interstellar medium. Aims: Attempt to, for the first time, spectrally resolve CO thermal line emission in a small sample of AGB stars in the Large Magellanic Cloud. Methods: ALMA was used to observe 2 OH/IR stars and 4 carbon stars in the LMC in the CO J= 2-1 line. Results: We present the first measurement of expansion velocities in extragalactic carbon stars. All four C-stars are detected and wind expansion velocities and stellar velocities are directly measured. Mass-loss rates are derived from modelling the spectral energy distribution and Spitzer/IRS spectrum with the DUSTY code. Gas-to-dust ratios are derived that make the predicted velocities agree with the observed ones. The expansion velocities and MLRs are compared to a Galactic sample of well-studied relatively low MLRs stars supplemented with extreme C-stars that have properties more similar to the LMC targets. Gas MLRs derived from a simple formula are significantly smaller than derived from the dust modelling, indicating an order of magnitude underestimate of the estimated CO abundance, time-variable mass loss, or that the CO intensities in LMC stars are lower than predicted by the formula derived for Galactic objects. This could be related to a stronger interstellar radiation field in the LMC. Conclusions: Although the LMC sample is small and the comparison to Galactic stars is non-trivial because of uncertainties in their distances it appears that for C stars the wind expansion velocities in the LMC are lower than in the solar neighbourhood, while the MLRs appear similar. This is in agreement with dynamical dust-driven wind models.
We present near-infrared interferometry of the carbon-rich asymptotic giant branch (AGB) star R Sculptoris. The visibility data indicate a broadly circular resolved stellar disk with a complex substructure. The observed AMBER squared visibility val ues show drops at the positions of CO and CN bands, indicating that these lines form in extended layers above the photosphere. The AMBER visibility values are best fit by a model without a wind. The PIONIER data are consistent with the same model. We obtain a Rosseland angular diameter of 8.9+-0.3 mas, corresponding to a Rosseland radius of 355+-55 Rsun, an effective temperature of 2640+-80 K, and a luminosity of log L/Lsun=3.74+-0.18. These parameters match evolutionary tracks of initial mass 1.5+-0.5 Msun and current mass 1.3+-0.7 Msun. The reconstructed PIONIER images exhibit a complex structure within the stellar disk including a dominant bright spot located at the western part of the stellar disk. The spot has an H-band peak intensity of 40% to 60% above the average intensity of the limb-darkening-corrected stellar disk. The contrast between the minimum and maximum intensity on the stellar disk is about 1:2.5. Our observations are broadly consistent with predictions by dynamic atmosphere and wind models, although models with wind appear to have a circumstellar envelope that is too extended compared to our observations. The detected complex structure within the stellar disk is most likely caused by giant convection cells, resulting in large-scale shock fronts, and their effects on clumpy molecule and dust formation seen against the photosphere at distances of 2-3 stellar radii.
Aims. The carbon-rich asymptotic giant branch (AGB) star TX Piscium (TX Psc) has been observed multiple times during multiple epochs and at different wavelengths and resolutions, showing a complex molecular CO line profile and a ring-like structure i n thermal dust emission. We investigate the molecular counterpart in high resolution, aiming to resolve the ring-like structure and identify its origin. Methods. Atacama Large Millimeter/submillimeter Array (ALMA) observations have been carried out to map the circumstellar envelope (CSE) of TX Psc in CO(2-1) emission and investigate the counterpart to the ring-like dust structure. Results. We report the detection of a thin, irregular, and elliptical detached molecular shell around TX Psc, which coincides with the dust emission. This is the first discovery of a non-spherically symmetric detached shell, raising questions about the shaping of detached shells. Conclusions. We investigate possible shaping mechanisms for elliptical detached shells and find that in the case of TX Psc, stellar rotation of 2 km/s can lead to a non-uniform mass-loss rate and velocity distribution from stellar pole to equator, recreating the elliptical CSE. We discuss the possible scenarios for increased stellar momentum, enabling the rotation rates needed to reproduce the ellipticity of our observations, and come to the conclusion that momentum transfer of an orbiting object with the mass of a brown dwarf would be sufficient.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا