ﻻ يوجد ملخص باللغة العربية
Detached circumstellar dust shells are detected around three carbon variables using Herschel-PACS. Two of them are already known on the basis of their thermal CO emission and two are visible as extensions in IRAS imaging data. By model fits to the new data sets, physical sizes, expansion timescales, dust temperatures, and more are deduced. A comparison with existing molecular CO material shows a high degree of correlation for TT Cyg and U Ant but a few distinct differences with other observables are also found.
Understanding the properties of dust produced during the asymptotic giant branch phase of stellar evolution is important for understanding the evolution of stars and galaxies. Recent observations of the carbon AGB star R Scl have shown that observati
Detached shells are believed to be created during a thermal pulse, and constrain the time scales and physical properties of one of the main drivers of late stellar evolution. We aim at determining the morphology of the detached dust shells around the
Aims. Our goal is to characterize the intermediate age, detached shell carbon star U Antliae morphologically and physically in order to study the mass-loss evolution after a possible thermal pulse. Methods. High spatial resolution ALMA observations o
We present optical and near-infrared (NIR) photometry of a classical nova, V2362 Cyg (= Nova Cygni 2006). V2362 Cyg experienced a peculiar rebrightening with a long duration from 100 to 240 d after the maximum of the nova. Our multicolor observation
Far-infrared Herschel/PACS images at 70 and 160 micron of a sample of 78 Galactic evolved stars are used to study the (dust) emission structures, originating from stellar wind-ISM interaction. In addition, two-fluid hydrodynamical simulations of the