ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological surface currents accessed through reversible hydrogenation of the three-dimensional bulk

72   0   0.0 ( 0 )
 نشر من قبل Haiming Deng
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hydrogen, the smallest and most abundant element in nature, can be efficiently incorporated within a solid and drastically modify its electronic state - it has been known to induce novel magnetoelectric effects in complex perovskites and modulate insulator-to-metal transition in a correlated Mott oxide. Here we demonstrate that hydrogenation resolves an outstanding challenge in chalcogenide classes of three-dimensional (3D) topological insulators and magnets - the control of intrinsic bulk conduction that denies access to quantum surface transport. With electrons donated by a reversible binding of H+ ions to Te(Se) chalcogens, carrier densities are easily changed by over 10^20 cm^-3, allowing tuning the Fermi level into the bulk bandgap to enter surface/edge current channels. The hydrogen-tuned topological materials are stable at room temperature and tunable disregarding bulk size, opening a breadth of platforms for harnessing emergent topological states.

قيم البحث

اقرأ أيضاً

We report the chemical reaction of single-layer graphene with hydrogen atoms, generated in situ by electron-induced dissociation of hydrogen silsesquioxane (HSQ). Hydrogenation, forming sp3 C-H functionality on the basal plane of graphene, proceeds a t a higher rate for single than for double layers, demonstrating the enhanced chemical reactivity of single sheet graphene. The net H atom sticking probability on single layers at 300 K is at least 0.03, which exceeds that of double layers by at least a factor of 15. Chemisorbed hydrogen atoms, which give rise to a prominent Raman D band, can be detached by thermal annealing at 100~200 degrees C. The resulting dehydrogenated graphene is activated when photothermally heated it reversibly binds ambient oxygen, leading to hole doping of the graphene. This functionalization of graphene can be exploited to manipulate electronic and charge transport properties of graphene devices.
We analyze the finite lifetimes of the topologically protected electrons in the surface state of Bi2Te3 and Bi2Se3 due to elastic scattering off surface vacancies and as a function of energy. The scattering rates are decomposed into surface-to-surfac e and surface-to-bulk contributions, giving us new fundamental insights into the scattering properties of the topological surface states (TSS). If the number of possible final bulk states is much larger than the number of final surface states, then the surface-to-bulk contribution is of importance, otherwise the surface-to-surface contribution dominates. Additionally, we find defect resonances that have a significant impact on the scattering properties of the TSS. They can strongly change the lifetime of the surface state to vary between tens of fs to ps at surface defect concentrations of 1 at%.
The archetypical 3D topological insulators Bi2Se3, Bi2Te3 and Sb2Te3 commonly exhibit high bulk conductivities, hindering the characterization of the surface state charge transport. The optimally doped topological insulators Bi2Te2Se and Bi2-xSbxTe2S , however, allow for such characterizations to be made. Here we report the first experimental comparison of the topological surface states and bulk conductances of Bi2Te2Se and Bi1.1Sb0.9Te2S, based on temperature-dependent high-pressure measurements. We find that the surface state conductance at low temperatures remains constant in the face of orders of magnitude increase in the bulk state conductance, revealing in a straightforward way that the topological surface states and bulk states are decoupled at low temperatures, consistent with theoretical models, and confirming topological insulators to be an excellent venue for studying charge transport in 2D Dirac electron systems.
The three-dimensional topological semimetals represent a new quantum state of matter. Distinct from the surface state in the topological insulators that exhibits linear dispersion in two-dimensional momentum plane, the three-dimensional semimetals ho st bulk band dispersions linearly along all directions, forming discrete Dirac cones in three-dimensional momentum space. In addition to the gapless points (Weyl/Dirac nodes) in the bulk, the three-dimensional Weyl/Dirac semimetals are also characterized by topologically protected surface state with Fermi arcs on their specific surface. The Weyl/Dirac semimetals have attracted much attention recently they provide a venue not only to explore unique quantum phenomena but also to show potential applications. While Cd3As2 is proposed to be a viable candidate of a Dirac semimetal, more experimental evidence and theoretical investigation are necessary to pin down its nature. In particular, the topological surface state, the hallmark of the three-dimensional semimetal, has not been observed in Cd3As2. Here we report the electronic structure of Cd3As2 investigated by angle-resolved photoemission measurements on the (112) crystal surface and detailed band structure calculations. The measured Fermi surface and band structure show a good agreement with the band structure calculations with two bulk Dirac-like bands approaching the Fermi level and forming Dirac points near the Brillouin zone center. Moreover, the topological surface state with a linear dispersion approaching the Fermi level is identified for the first time. These results provide strong experimental evidence on the nature of topologically non-trivial three-dimensional Dirac cones in Cd3As2.
Graphene is of interest in the development of next-generation electronics due to its high electron mobility, flexibility and stability. However, graphene transistors have poor on/off current ratios because of the absence of a bandgap. One approach to introduce an energy gap is to use hydrogenation reaction, which changes graphene into insulating graphane with sp3 bonding. Here we show that an electric field can be used to control conductor-to-insulator transitions in microscale graphene via a reversible electrochemical hydrogenation in an organic liquid electrolyte containing dissociative hydrogen ions. The fully hydrogenated graphene exhibits a lower limit sheet resistance of 200 Gohm/sq, resulting in graphene field-effect transistors with on/off current ratios of 10^8 at room temperature. The devices also exhibit high endurance, with up to one million switching cycles. Similar insulating behaviours are also observed in bilayer graphene, while trilayer graphene remains highly conductive after the hydrogenation. Changes in the graphene lattice, and the transformation from sp2 to sp3 hybridization, is confirmed by in-situ Raman spectroscopy, supported by first-principles calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا