ﻻ يوجد ملخص باللغة العربية
Three-dimensional topological insulators are a class of Dirac materials, wherein strong spin-orbit coupling leads to two-dimensional surface states. The latter feature spin-momentum locking, i.e., each momentum vector is associated with a spin locked perpendicularly to it in the surface plane. While the principal spin generation capability of topological insulators is well established, comparatively little is known about the interaction of the spins with external stimuli like polarized light. We observe a helical, bias-dependent photoconductance at the lateral edges of topological Bi2Te2Se platelets for perpendicular incidence of light. The same edges exhibit also a finite bias-dependent Kerr angle, indicative of spin accumulation induced by a transversal spin Hall effect in the bulk states of the Bi2Te2Se platelets. A symmetry analysis shows that the helical photoconductance is distinct to common longitudinal photoconductance and photocurrent phenomena, but consistent with the accumulated spins being transported in the side facets of the platelets. Our findings demonstrate that spin effects in the facets of 3D topological insulators can be addressed and read-out in optoelectronic devices even at room temperatures.
Inverse spin Hall effect (ISHE) allows the conversion of pure spin current into charge current in nonmagnetic materials (NM) due to spin-orbit interaction (SOI). In ferromagnetic materials (FM), SOI is known to contribute to anomalous Hall effect (AH
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crys
We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) {alpha}-Sn[1-3]. By angle-resolved photoelectron
We observe the inverse spin Hall effect in a two-dimensional electron gas confined in AlGaAs/InGaAs quantum wells. Specifically, we find that an inhomogeneous spin density induced by the optical injection gives rise an electric current transverse to
Recent studies on the magneto-transport properties of topological insulators (TI) have attracted great attention due to the rich spin-orbit physics and promising applications in spintronic devices. Particularly the strongly spin-moment coupled electr