ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-pumping into surface states of topological insulator {alpha}-Sn, spin to charge conversion at room temperature

70   0   0.0 ( 0 )
 نشر من قبل Juan-Carlos Rojas-S\\'anchez
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental results on the conversion of a spin current into a charge current by spin pumping into the Dirac cone with helical spin polarization of the elemental topological insulator (TI) {alpha}-Sn[1-3]. By angle-resolved photoelectron spectroscopy (ARPES) we first confirm that the Dirac cone at the surface of {alpha}-Sn (0 0 1) layers subsists after covering with Ag. Then we show that resonant spin pumping at room temperature from Fe through Ag into {alpha}-Sn layers induces a lateral charge current that can be ascribed to the Inverse Edelstein Effect[4-5]. Our observation of an Inverse Edelstein Effect length[5-6] much longer than for Rashba interfaces[5-10] demonstrates the potential of the TI for conversion between spin and charge in spintronic devices. By comparing our results with data on the relaxation time of TI free surface states from time-resolved ARPES, we can anticipate the ultimate potential of TI for spin to charge conversion and the conditions to reach it.



قيم البحث

اقرأ أيضاً

72 - P. Noel , C. Thomas , Y. Fu 2017
We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. The conversion rates are found to be very high, with inverse Edelstein lengths up to 2.0 +/- 0.5 nm. The influence of the HgTe layer thickness on the conversion efficiency has been studied, as well as the role of a HgCdTe barrier inserted in-between the HgTe and NiFe layers. These measurements, associated to the temperature dependence of the resistivity, allows to ascribe these high conversion rates to the spin momentum locking property of HgTe surface states.
104 - Yang Li , Shi-jia Yang , Dali Sun 2020
b{eta}-PdBi2 has attracted much attention for its prospective ability to possess simultaneously topological surface and superconducting states due to its unprecedented spin-orbit interaction (SOC). Whereas most works have focused solely on investigat ing its topological surface states, the coupling between spin and charge degrees of freedom in this class of quantum material remains unexplored. Here we first report a study of spin-to-charge conversion in a b{eta}-PdBi2 ultrathin film grown by molecular beam epitaxy, utilizing a spin pumping technique to perform inverse spin Hall effect measurements. We find that the room temperature spin Hall angle of Fe/b{eta}-PdBi2, {theta}_SH=0.037. This value is one order of magnitude larger than that of reported conventional superconductors, and is comparable to that of the best SOC metals and topological insulators. Our results provide an avenue for developing superconductor-based spintronic applications.
Spin injection using ferromagnetic semiconductors at room temperature is a building block for the realization of spin-functional semiconductor devices. Nevertheless, this has been very challenging due to the lack of reliable room-temperature ferromag netism in well-known group IV and III-V based semiconductors. Here, we demonstrate room-temperature spin injection by using spin pumping in a (Ga,Fe)Sb / BiSb heterostructure, where (Ga,Fe)Sb is a ferromagnetic semiconductor (FMS) with high Curie temperature (TC) and BiSb is a topological insulator (TI). Despite the very small magnetization of (Ga,Fe)Sb at room temperature (45 emu/cc), we are able to detect spin injection from (Ga,Fe)Sb by utilizing the inverse spin Hall effect (ISHE) in the topological surface states of BiSb with a large inverse spin Hall angle of 2.5. Our study provides the first demonstration of spin injection as well as spin-to-charge conversion at room temperature in a FMS/TI heterostructure.
We report the observation of ferromagnetic resonance-driven spin pumping signals at room temperature in three-dimensional topological insulator thin films -- Bi2Se3 and (Bi,Sb)2Te3 -- deposited by molecular beam epitaxy on yttrium iron garnet thin fi lms. By systematically varying the Bi2Se3 film thickness, we show that the spin-charge conversion efficiency, characterized by the inverse Rashba-Edelstein effect length (lambda_IREE), increases dramatically as the film thickness is increased from 2 quintuple layers, saturating above 6 quintuple layers. This suggests a dominant role of surface states in spin and charge interconversion in topological insulator/ferromagnet heterostructures. Our conclusion is further corroborated by studying a series of YIG/(BiSb)2Te3 heterostructures. Finally, we use the ferromagnetic resonance linewidth broadening and the inverse Rashba-Edelstein signals to determine the effective interfacial spin mixing conductance and lambda_IREE.
Three-dimensional topological insulators are a class of Dirac materials, wherein strong spin-orbit coupling leads to two-dimensional surface states. The latter feature spin-momentum locking, i.e., each momentum vector is associated with a spin locked perpendicularly to it in the surface plane. While the principal spin generation capability of topological insulators is well established, comparatively little is known about the interaction of the spins with external stimuli like polarized light. We observe a helical, bias-dependent photoconductance at the lateral edges of topological Bi2Te2Se platelets for perpendicular incidence of light. The same edges exhibit also a finite bias-dependent Kerr angle, indicative of spin accumulation induced by a transversal spin Hall effect in the bulk states of the Bi2Te2Se platelets. A symmetry analysis shows that the helical photoconductance is distinct to common longitudinal photoconductance and photocurrent phenomena, but consistent with the accumulated spins being transported in the side facets of the platelets. Our findings demonstrate that spin effects in the facets of 3D topological insulators can be addressed and read-out in optoelectronic devices even at room temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا