ترغب بنشر مسار تعليمي؟ اضغط هنا

Familia: An Open-Source Toolkit for Industrial Topic Modeling

96   0   0.0 ( 0 )
 نشر من قبل Chen Li
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Familia is an open-source toolkit for pragmatic topic modeling in industry. Familia abstracts the utilities of topic modeling in industry as two paradigms: semantic representation and semantic matching. Efficient implementations of the two paradigms are made publicly available for the first time. Furthermore, we provide off-the-shelf topic models trained on large-scale industrial corpora, including Latent Dirichlet Allocation (LDA), SentenceLDA and Topical Word Embedding (TWE). We further describe typical applications which are successfully powered by topic modeling, in order to ease the confusions and difficulties of software engineers during topic model selection and utilization.

قيم البحث

اقرأ أيضاً

In the last decade, a variety of topic models have been proposed for text engineering. However, except Probabilistic Latent Semantic Analysis (PLSA) and Latent Dirichlet Allocation (LDA), most of existing topic models are seldom applied or considered in industrial scenarios. This phenomenon is caused by the fact that there are very few convenient tools to support these topic models so far. Intimidated by the demanding expertise and labor of designing and implementing parameter inference algorithms, software engineers are prone to simply resort to PLSA/LDA, without considering whether it is proper for their problem at hand or not. In this paper, we propose a configurable topic modeling framework named Familia, in order to bridge the huge gap between academic research fruits and current industrial practice. Familia supports an important line of topic models that are widely applicable in text engineering scenarios. In order to relieve burdens of software engineers without knowledge of Bayesian networks, Familia is able to conduct automatic parameter inference for a variety of topic models. Simply through changing the data organization of Familia, software engineers are able to easily explore a broad spectrum of existing topic models or even design their own topic models, and find the one that best suits the problem at hand. With its superior extendability, Familia has a novel sampling mechanism that strikes balance between effectiveness and efficiency of parameter inference. Furthermore, Familia is essentially a big topic modeling framework that supports parallel parameter inference and distributed parameter storage. The utilities and necessity of Familia are demonstrated in real-life industrial applications. Familia would significantly enlarge software engineers arsenal of topic models and pave the way for utilizing highly customized topic models in real-life problems.
Latent Dirichlet allocation (LDA) is a popular topic modeling technique in academia but less so in industry, especially in large-scale applications involving search engine and online advertising systems. A main underlying reason is that the topic mod els used have been too small in scale to be useful; for example, some of the largest LDA models reported in literature have up to $10^3$ topics, which cover difficultly the long-tail semantic word sets. In this paper, we show that the number of topics is a key factor that can significantly boost the utility of topic-modeling systems. In particular, we show that a big LDA model with at least $10^5$ topics inferred from $10^9$ search queries can achieve a significant improvement on industrial search engine and online advertising systems, both of which serving hundreds of millions of users. We develop a novel distributed system called Peacock to learn big LDA models from big data. The main features of Peacock include hierarchical distributed architecture, real-time prediction and topic de-duplication. We empirically demonstrate that the Peacock system is capable of providing significant benefits via highly scalable LDA topic models for several industrial applications.
215 - Zhe Zhao , Hui Chen , Jinbin Zhang 2019
Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets.
Textual adversarial attacking has received wide and increasing attention in recent years. Various attack models have been proposed, which are enormously distinct and implemented with different programming frameworks and settings. These facts hinder q uick utilization and apt comparison of attack models. In this paper, we present an open-source textual adversarial attack toolkit named OpenAttack. It currently builds in 12 typical attack models that cover all the attack types. Its highly inclusive modular design not only supports quick utilization of existing attack models, but also enables great flexibility and extensibility. OpenAttack has broad uses including comparing and evaluating attack models, measuring robustness of a victim model, assisting in developing new attack models, and adversarial training. Source code, built-in models and documentation can be obtained at https://github.com/thunlp/OpenAttack.
143 - Damir Korenv{c}ic 2020
Topic models are widely used unsupervised models capable of learning topics - weighted lists of words and documents - from large collections of text documents. When topic models are used for discovery of topics in text collections, a question that ar ises naturally is how well the model-induced topics correspond to topics of interest to the analyst. In this paper we revisit and extend a so far neglected approach to topic model evaluation based on measuring topic coverage - computationally matching model topics with a set of reference topics that models are expected to uncover. The approach is well suited for analyzing models performance in topic discovery and for large-scale analysis of both topic models and measures of model quality. We propose new measures of coverage and evaluate, in a series of experiments, different types of topic models on two distinct text domains for which interest for topic discovery exists. The experiments include evaluation of model quality, analysis of coverage of distinct topic categories, and the analysis of the relationship between coverage and other methods of topic model evaluation. The paper contributes a new supervised measure of coverage, and the first unsupervised measure of coverage. The supervised measure achieves topic matching accuracy close to human agreement. The unsupervised measure correlates highly with the supervised one (Spearmans $rho geq 0.95$). Other contributions include insights into both topic models and different methods of model evaluation, and the datasets and code for facilitating future research on topic coverage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا