ترغب بنشر مسار تعليمي؟ اضغط هنا

OpenAttack: An Open-source Textual Adversarial Attack Toolkit

188   0   0.0 ( 0 )
 نشر من قبل Fanchao Qi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Textual adversarial attacking has received wide and increasing attention in recent years. Various attack models have been proposed, which are enormously distinct and implemented with different programming frameworks and settings. These facts hinder quick utilization and apt comparison of attack models. In this paper, we present an open-source textual adversarial attack toolkit named OpenAttack. It currently builds in 12 typical attack models that cover all the attack types. Its highly inclusive modular design not only supports quick utilization of existing attack models, but also enables great flexibility and extensibility. OpenAttack has broad uses including comparing and evaluating attack models, measuring robustness of a victim model, assisting in developing new attack models, and adversarial training. Source code, built-in models and documentation can be obtained at https://github.com/thunlp/OpenAttack.



قيم البحث

اقرأ أيضاً

104 - Dianqi Li , Yizhe Zhang , Hao Peng 2020
Adversarial examples expose the vulnerabilities of natural language processing (NLP) models, and can be used to evaluate and improve their robustness. Existing techniques of generating such examples are typically driven by local heuristic rules that are agnostic to the context, often resulting in unnatural and ungrammatical outputs. This paper presents CLARE, a ContextuaLized AdversaRial Example generation model that produces fluent and grammatical outputs through a mask-then-infill procedure. CLARE builds on a pre-trained masked language model and modifies the inputs in a context-aware manner. We propose three contextualized perturbations, Replace, Insert and Merge, allowing for generating outputs of varied lengths. With a richer range of available strategies, CLARE is able to attack a victim model more efficiently with fewer edits. Extensive experiments and human evaluation demonstrate that CLARE outperforms the baselines in terms of attack success rate, textual similarity, fluency and grammaticality.
We describe an open-source toolkit for neural machine translation (NMT). The toolkit prioritizes efficiency, modularity, and extensibility with the goal of supporting NMT research into model architectures, feature representations, and source modaliti es, while maintaining competitive performance and reasonable training requirements. The toolkit consists of modeling and translation support, as well as detailed pedagogical documentation about the underlying techniques.
215 - Zhe Zhao , Hui Chen , Jinbin Zhang 2019
Existing works, including ELMO and BERT, have revealed the importance of pre-training for NLP tasks. While there does not exist a single pre-training model that works best in all cases, it is of necessity to develop a framework that is able to deploy various pre-training models efficiently. For this purpose, we propose an assemble-on-demand pre-training toolkit, namely Universal Encoder Representations (UER). UER is loosely coupled, and encapsulated with rich modules. By assembling modules on demand, users can either reproduce a state-of-the-art pre-training model or develop a pre-training model that remains unexplored. With UER, we have built a model zoo, which contains pre-trained models based on different corpora, encoders, and targets (objectives). With proper pre-trained models, we could achieve new state-of-the-art results on a range of downstream datasets.
221 - Yangyi Chen , Jin Su , Wei Wei 2021
Recently, the textual adversarial attack models become increasingly popular due to their successful in estimating the robustness of NLP models. However, existing works have obvious deficiencies. (1) They usually consider only a single granularity of modification strategies (e.g. word-level or sentence-level), which is insufficient to explore the holistic textual space for generation; (2) They need to query victim models hundreds of times to make a successful attack, which is highly inefficient in practice. To address such problems, in this paper we propose MAYA, a Multi-grAnularitY Attack model to effectively generate high-quality adversarial samples with fewer queries to victim models. Furthermore, we propose a reinforcement-learning based method to train a multi-granularity attack agent through behavior cloning with the expert knowledge from our MAYA algorithm to further reduce the query times. Additionally, we also adapt the agent to attack black-box models that only output labels without confidence scores. We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets. Experimental results show that our models achieve overall better attacking performance and produce more fluent and grammatical adversarial samples compared to baseline models. Besides, our adversarial attack agent significantly reduces the query times in both attack settings. Our codes are released at https://github.com/Yangyi-Chen/MAYA.
Over the past few years, various word-level textual attack approaches have been proposed to reveal the vulnerability of deep neural networks used in natural language processing. Typically, these approaches involve an important optimization step to de termine which substitute to be used for each word in the original input. However, current research on this step is still rather limited, from the perspectives of both problem-understanding and problem-solving. In this paper, we address these issues by uncovering the theoretical properties of the problem and proposing an efficient local search algorithm (LS) to solve it. We establish the first provable approximation guarantee on solving the problem in general cases. Notably, for adversarial textual attack, it is even better than the previous bound which only holds in special case. Extensive experiments involving five NLP tasks, six datasets and eleven NLP models show that LS can largely reduce the number of queries usually by an order of magnitude to achieve high attack success rates. Further experiments show that the adversarial examples crafted by LS usually have higher quality, exhibit better transferability, and can bring more robustness improvement to victim models by adversarial training.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا