ترغب بنشر مسار تعليمي؟ اضغط هنا

Peacock: Learning Long-Tail Topic Features for Industrial Applications

57   0   0.0 ( 0 )
 نشر من قبل Jia Zeng
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Latent Dirichlet allocation (LDA) is a popular topic modeling technique in academia but less so in industry, especially in large-scale applications involving search engine and online advertising systems. A main underlying reason is that the topic models used have been too small in scale to be useful; for example, some of the largest LDA models reported in literature have up to $10^3$ topics, which cover difficultly the long-tail semantic word sets. In this paper, we show that the number of topics is a key factor that can significantly boost the utility of topic-modeling systems. In particular, we show that a big LDA model with at least $10^5$ topics inferred from $10^9$ search queries can achieve a significant improvement on industrial search engine and online advertising systems, both of which serving hundreds of millions of users. We develop a novel distributed system called Peacock to learn big LDA models from big data. The main features of Peacock include hierarchical distributed architecture, real-time prediction and topic de-duplication. We empirically demonstrate that the Peacock system is capable of providing significant benefits via highly scalable LDA topic models for several industrial applications.

قيم البحث

اقرأ أيضاً

Familia is an open-source toolkit for pragmatic topic modeling in industry. Familia abstracts the utilities of topic modeling in industry as two paradigms: semantic representation and semantic matching. Efficient implementations of the two paradigms are made publicly available for the first time. Furthermore, we provide off-the-shelf topic models trained on large-scale industrial corpora, including Latent Dirichlet Allocation (LDA), SentenceLDA and Topical Word Embedding (TWE). We further describe typical applications which are successfully powered by topic modeling, in order to ease the confusions and difficulties of software engineers during topic model selection and utilization.
Highly skewed long-tail item distribution is very common in recommendation systems. It significantly hurts model performance on tail items. To improve tail-item recommendation, we conduct research to transfer knowledge from head items to tail items, leveraging the rich user feedback in head items and the semantic connections between head and tail items. Specifically, we propose a novel dual transfer learning framework that jointly learns the knowledge transfer from both model-level and item-level: 1. The model-level knowledge transfer builds a generic meta-mapping of model parameters from few-shot to many-shot model. It captures the implicit data augmentation on the model-level to improve the representation learning of tail items. 2. The item-level transfer connects head and tail items through item-level features, to ensure a smooth transfer of meta-mapping from head items to tail items. The two types of transfers are incorporated to ensure the learned knowledge from head items can be well applied for tail item representation learning in the long-tail distribution settings. Through extensive experiments on two benchmark datasets, results show that our proposed dual transfer learning framework significantly outperforms other state-of-the-art methods for tail item recommendation in hit ratio and NDCG. It is also very encouraging that our framework further improves head items and overall performance on top of the gains on tail items.
Real-world classification problems typically exhibit an imbalanced or long-tailed label distribution, wherein many labels are associated with only a few samples. This poses a challenge for generalisation on such labels, and also makes naive learning biased towards dominant labels. In this paper, we present two simple modifications of standard softmax cross-entropy training to cope with these challenges. Our techniques revisit the classic idea of logit adjustment based on the label frequencies, either applied post-hoc to a trained model, or enforced in the loss during training. Such adjustment encourages a large relative margin between logits of rare versus dominant labels. These techniques unify and generalise several recent proposals in the literature, while possessing firmer statistical grounding and empirical performance.
121 - Wen Sun , Shiyu Lei , Lu Wang 2020
Industrial Internet of Things (IoT) enables distributed intelligent services varying with the dynamic and realtime industrial devices to achieve Industry 4.0 benefits. In this paper, we consider a new architecture of digital twin empowered Industrial IoT where digital twins capture the characteristics of industrial devices to assist federated learning. Noticing that digital twins may bring estimation deviations from the actual value of device state, a trusted based aggregation is proposed in federated learning to alleviate the effects of such deviation. We adaptively adjust the aggregation frequency of federated learning based on Lyapunov dynamic deficit queue and deep reinforcement learning, to improve the learning performance under the resource constraints. To further adapt to the heterogeneity of Industrial IoT, a clustering-based asynchronous federated learning framework is proposed. Numerical results show that the proposed framework is superior to the benchmark in terms of learning accuracy, convergence, and energy saving.
We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate few-shot models for classes existing at the tail of the class distribut ion, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا