ﻻ يوجد ملخص باللغة العربية
In order to understand the physical hysteresis loops clearly, we constructed a novel model, which is combined with the electric field, the temperature, and the stress as one synthetically parameter. This model revealed the shape of hysteresis loop was determined by few variables in ferroelectric materials: the saturation of polarization, the coercive field, the electric susceptibility and the equivalent field. Comparison with experimental results revealed the model can retrace polarization versus electric field and temperature. As a applications of this model, the calculate formula of energy storage efficiency, the electrocaloric effect, and the P(E,T) function have also been included in this article.
In published papers, the Gibbs free energy of ferroelectric materials has usually been quantified by the retention of 6th or 8th order polarization terms. In this paper, a newly analytical model of Gibbs free energy, thereout, a new model of polariza
A new mathematical model of hysteresis loop has been derived. Model consists in an extansion of tanh($cdot$) by extanding the base of exp function into an arbitrary positive number. The presented model is self-similar and invariant with respect to sc
Regression machine learning is widely applied to predict various materials. However, insufficient materials data usually leads to a poor performance. Here, we develop a new voting data-driven method that could generally improve the performance of reg
The study and applications of ferroelectric materials in the biomedical and biotechnological fields is a novel and very promising scientific area that spans roughly one decade. However, some groups have already provided experimental proof of very int
We present a theoretical proposal for the design of a thermal switch based on the anisotropy of the thermal conductivity of PbTiO3 and of the possibility to rotate the ferroelectric polarization with an external electric field. Our calculations are b