ﻻ يوجد ملخص باللغة العربية
We present theoretical studies of SRF materials from the Center for Bright Beams. First, we discuss the effects of disorder, inhomogeneities, and materials anisotropy on the maximum parallel surface field that a superconductor can sustain in an SRF cavity, using linear stability in conjunction with Ginzburg-Landau and Eilenberger theory. We connect our disorder mediated vortex nucleation model to current experimental developments of Nb$_3$Sn and other cavity materials. Second, we use time-dependent Ginzburg-Landau simulations to explore the role of inhomogeneities in nucleating vortices, and discuss the effects of trapped magnetic flux on the residual resistance of weakly- pinned Nb$_3$Sn cavities. Third, we present first-principles density-functional theory (DFT) calculations to uncover and characterize the key fundamental materials processes underlying the growth of Nb$_3$Sn. Our calculations give us key information about how, where, and when the observed tin-depletedregions form. Based on this we plan to develop new coating protocols to mitigate the formation of tin depleted regions.
Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams typical of the Large Hadron Collider makes it possible to conceive the generation of pion beams via phot
Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of thes
Photoinjectors are widely used for linear accelerators as electron sources to generate high-brightness electron beam. Drive laser, which determines the timing structure and quality of the electron beam, is a crucial device of photoinjector. A new dri
The surface resistance of an RF superconductor depends on the surface temperature, the residual resistance and various superconductor parameters, e.g. the energy gap, and the electron mean free path. These parameters can be determined by measuring th
Since 2001, the SPIRAL 1 facility has been one of the pioneering facilities in ISOL techniques for reaccelerating radioactive ion beams: the fragmentation of the heavy ion beams of GANIL on graphite targets and subsequent ionization in the Nanogan EC