ﻻ يوجد ملخص باللغة العربية
Since 2001, the SPIRAL 1 facility has been one of the pioneering facilities in ISOL techniques for reaccelerating radioactive ion beams: the fragmentation of the heavy ion beams of GANIL on graphite targets and subsequent ionization in the Nanogan ECR ion source has permitted to deliver beams of gaseous elements (He, N, O, F, Ne, Ar, Kr) to numerous experiments. Thanks to the CIME cyclotron, energies up to 20 AMeV could be obtained. In 2014, the facility was stopped to undertake a major upgrade, with the aim to extend the production capabilities of SPIRAL 1 to a number of new elements. This upgrade, which is presently under commissioning, consists in the integration of an ECR booster in the SPIRAL 1 beam line to charge breed the beam of different 1+ sources. A FEBIAD source (the so-called VADIS from ISOLDE) was chosen to be the future workhorse for producing many metallic ion beams. The charge breeder is an upgraded version of the Phoenix booster which was previously tested in ISOLDE. The performances of the aforementioned ingredients of the upgrade (targets, 1+ source and charge breeder) have been and are still being optimized in the frame of different European projects (EMILIE, ENSAR and ENSAR2). The upgraded SPIRAL 1 facility will provide soon its first new beams for physics and further beam development are undertaken to prepare for the next AGATA campaign. The results obtained during the on-line commissioning period permit to evaluate intensities for new beams from the upgraded facility.
The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3
A laser-Compton backscattering beam, which we call a `Laser-Electron Photon beam, was upgraded at the LEPS beamline of SPring-8. We accomplished the gains in backscattered photon beam intensities by factors of 1.5--1.8 with the injection of two adjac
Neutrino beams at from high-energy proton accelerators have been instrumental discovery tools in particle physics. Neutrino beams are derived from the decays of charged pi and K mesons, which in turn are created from proton beams striking thick nucle
We have studied the time evolution of the heavy ion luminosity and bunch intensities in the Relativistic Heavy Ion Collider (RHIC), at BNL, and in the Large Hadron Collider (LHC), at CERN. First, we present measurements from a large number of RHIC st
We integrated an injector linac control system to the SPring-8 standard system on September 2000. As a result of this integration, the SPring-8 accelerator complex was controlled by one unified system. Because the linac was continuously running as th