ﻻ يوجد ملخص باللغة العربية
Photoinjectors are widely used for linear accelerators as electron sources to generate high-brightness electron beam. Drive laser, which determines the timing structure and quality of the electron beam, is a crucial device of photoinjector. A new drive laser system has been designed and constructed for the upgraded 3.5-cell DC-SRF photoinjector at Peking University. The drive laser system consists of a 1064 nm laser oscillator, a four- stage amplifier, the second and fourth harmonic generators, the optical system to transfer the UV pulses to the photocathode, and the synchronization system. The drive laser system has been successfully applied in the stable operation of DC-SRF photoinjector and its performance meets the requirements. 266 nm laser with an average power close to 1W can be delivered to illuminate the Cs2Te photocathode and the instability is less than 5% for long time operation. The design consideration for improving the UV laser quality, a detailed description of laser system, and its performance are presented in this paper.
A low level radio frequency (LLRF) control system is designed and constructed at Peking University, which is for the DC-SRF photo injector operating at 2K. Besides with continuous wave (CW), the system is also reliable with pulsed RF and pulsed beam,
We introduce the LAMOST Stellar Parameter Pipeline at Peking University --- LSP3, developed and implemented for the determinations of radial velocity $V_{rm r}$ and stellar atmospheric parameters (effective temperature $T_{rm eff}$, surface gravity l
The design of the Linac Coherent Light Source assumes that a low-emittance, 1-nC, 10-ps beam will be available for injection into the 15-GeV linac. The proposed rf photocathode injector that will provide a 150-MeV beam with rms normalized emittances
A commercially-available titanium-sapphire laser system has recently been installed at the Fermilab A0 photoinjector laboratory in support of photoemission and electron beam diagnostics studies. The laser system is synchronized to both the 1.3-GHz ma
Over the last years, the generation and acceleration of ultra-short, high quality electron beams has attracted more and more interest in accelerator science. Electron bunches with these properties are necessary to operate and test novel diagnostics a