ترغب بنشر مسار تعليمي؟ اضغط هنا

Staging superstructures in high-$T_c$ Sr/O co-doped La$_{2-x}$Sr$_x$CuO$_{4+y}$

333   0   0.0 ( 0 )
 نشر من قبل Pia Jensen Ray
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present high energy X-ray diffraction studies on the structural phases of an optimal high-$T_c$ superconductor La$_{2-x}$Sr$_x$CuO$_{4+y}$ tailored by co-hole-doping. This is specifically done by varying the content of two very different chemical species, Sr and O, respectively, in order to study the influence of each. A superstructure known as staging is observed in all samples, with the staging number $n$ increasing for higher Sr dopings $x$. We find that the staging phases emerge abruptly with temperature, and can be described as a second order phase transition with transition temperatures slightly depending on the Sr doping. The Sr appears to correlate the interstitial oxygen in a way that stabilises the reproducibility of the staging phase both in terms of staging period and volume fraction in a specific sample. The structural details as investigated in this letter appear to have no direct bearing on the electronic phase separation previously observed in the same samples. This provides new evidence that the electronic phase separation is determined by the overall hole concentration rather than specific Sr/O content and concommittant structural details.

قيم البحث

اقرأ أيضاً

We present results of magnetic neutron diffraction experiments on the co-doped super-oxygenated La(2-x)Sr(x)CuO(4+y) (LSCO+O) system with x=0.09. The spin-density wave has been studied and we find long-range incommensurate antiferromagnetic order bel ow T_N coinciding with the superconducting ordering temperature T_c=40 K. The incommensurability value is consistent with a hole-doping of n_h~1/8, but in contrast to non-superoxygenated La(2-x)Sr(x)CuO(4) with hole-doping close to n_h ~ 1/8 the magnetic order parameter is not field-dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the other striped lanthanum-cuprate systems.
98 - C. Girod , D. LeBoeuf , A. Demuer 2021
The specific heat $C$ of the cuprate superconductors La$_{2-x}$Sr$_x$CuO$_4$ and Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$ was measured at low temperature (down to $0.5~{rm K}$), for dopings $p$ close to $p^star$, the critical doping for the onset of the pseudogap phase. A magnetic field up to $35~{rm T}$ was applied to suppress superconductivity, giving direct access to the normal state at low temperature, and enabling a determination of $C_e$, the electronic contribution to the normal-state specific heat, at $T to 0$. In La$_{2-x}$Sr$_x$CuO$_4$ at $x=p = 0.22$, $0.24$ and $0.25$, $C_e / T = 15-16~{rm mJmol}^{-1}{rm K}^{-2}$ at $T = 2~{rm K}$, values that are twice as large as those measured at higher doping ($p > 0.3$) and lower doping ($p < 0.15$). This confirms the presence of a broad peak in the doping dependence of $C_e$ at $p^starsimeq 0.19$, as previously reported for samples in which superconductivity was destroyed by Zn impurities. Moreover, at those three dopings, we find a logarithmic growth as $T to 0$, such that $C_e / T sim {rm B}ln(T_0/T)$. The peak vs $p$ and the logarithmic dependence vs $T$ are the two typical thermodynamic signatures of quantum criticality. In the very different cuprate Bi$_{2+y}$Sr$_{2-x-y}$La$_x$CuO$_{6+delta}$, we again find that $C_e / T sim {rm B}ln(T_0/T$) at $p simeq p^star$, strong evidence that this $ln(1/T)$ dependence - first discovered in the cuprates La$_{1.8-x}$Eu$_{0.2}$Sr$_x$CuO$_4$ and La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ - is a universal property of the pseudogap critical point. All four materials display similar values of the $rm B$ coefficient, indicating that they all belong to the same universality class.
Magnetic excitations in the energy range up to 100 meV are studied for over-doped La$_{2-x}$Sr$_{x}$CuO$_{4}$ with $x=0.25$ and 0.30, using time-of-flight neutron spectroscopy. Comparison of spectra integrated over the width of an antiferromagnetic B rillouin zone demonstrates that the magnetic scattering at intermediate energies, $20 lesssim omega lesssim 100$ meV, progressively decreases with over-doping. This strongly suggests that the magnetism is not related to Fermi surface nesting, but rather is associated with a decreasing volume fraction of (probably fluctuating) antiferromagnetic bubbles.
237 - Zhiwei Zhang , R. Sutarto , F. He 2017
A nematic order in stripe-ordered cuprates was recently identified with (001) reflection at resonant energies associated with the in-plane states. However, whether this resonant reflection is ubiquitous among all 214 cuprates is still unknown. Here w e report a Resonant soft X-ray Scattering (RXS) measurement on two La$_{2-x}$Sr$_x$CuO$_{4+y}$ crystals. Charge order was found in La$_2$CuO$_{4+y}$ with a total hole concentration near 0.125/Cu but no measurable (001) peak at any resonance, while in a La$_{1.94}$Sr$_{0.06}$CuO$_{4+y}$ sample near 0.16/Cu a (001) peak resonant was identified to be consistent with the presence of LTT tilting. The lack of such a (001) peak in a compound with stripe-like charge order raises questions about nematicity and the origin of the scattering feature.
Inelastic neutron scattering has been used to study the in-plane Cu-O bond-stretching mode in oxygen doped La$_{1.94}$Sr$_{0.06}$CuO$_{4.035}$ ($T_c = 38,text{K}$) and La$_2$CuO$_{4+delta}$ ($T_c = 43,text{K}$). Similar to results from optimally dope d La$_{1.85}$Sr$_{0.15}$CuO$_4$ ($T_c = 35,text{K}$), we observe anomalous features in the dispersion of this half-breathing mode in the form of a softening halfway through the Brillouin Zone. Considering the differences in electronic structure and local environment between the oxygen- and strontium-doped compounds with similar $T_text{c}$, we rule out a connection between the phonon anomaly and structural instabilities related to the specific dopant type. We interpret the phonon anomaly as a signature of correlated charge fluctuations possibly connected to stripes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا