ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous Dispersion of LO Phonons in Oxygen-Doped La$_{2-x}$Sr$_{x}$CuO$_{4+delta}$

93   0   0.0 ( 0 )
 نشر من قبل Tim Tejsner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inelastic neutron scattering has been used to study the in-plane Cu-O bond-stretching mode in oxygen doped La$_{1.94}$Sr$_{0.06}$CuO$_{4.035}$ ($T_c = 38,text{K}$) and La$_2$CuO$_{4+delta}$ ($T_c = 43,text{K}$). Similar to results from optimally doped La$_{1.85}$Sr$_{0.15}$CuO$_4$ ($T_c = 35,text{K}$), we observe anomalous features in the dispersion of this half-breathing mode in the form of a softening halfway through the Brillouin Zone. Considering the differences in electronic structure and local environment between the oxygen- and strontium-doped compounds with similar $T_text{c}$, we rule out a connection between the phonon anomaly and structural instabilities related to the specific dopant type. We interpret the phonon anomaly as a signature of correlated charge fluctuations possibly connected to stripes.

قيم البحث

اقرأ أيضاً

The superconducting properties of high-tc materials are functions of carriers concentration, which is controlled by the concentration of defects including heterovalent cations, interstitial oxygen ions, and oxygen vacancies. Here we combine low-tempe rature thermal treatment of La$_{2-x}$Sr$_{x}$CuO$_{4}$ epitaxial thin films and confocal Raman spectroscopy to control and investigate oxygen vacancies. We demonstrate that the apical site is the most favorable position to accommodate oxygen vacancies under low-temperature annealing conditions. Additionally we show that in high-quality films of overdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$, oxygen vacancies strongly deform the oxygen environment around the copper ions. This observation is consistent with previous defect-chemical studies, and calls for further investigation of the defect induced properties in the overdoped regime of the hole-doped lanthanum cuprates.
Magnetic excitations in the energy range up to 100 meV are studied for over-doped La$_{2-x}$Sr$_{x}$CuO$_{4}$ with $x=0.25$ and 0.30, using time-of-flight neutron spectroscopy. Comparison of spectra integrated over the width of an antiferromagnetic B rillouin zone demonstrates that the magnetic scattering at intermediate energies, $20 lesssim omega lesssim 100$ meV, progressively decreases with over-doping. This strongly suggests that the magnetism is not related to Fermi surface nesting, but rather is associated with a decreasing volume fraction of (probably fluctuating) antiferromagnetic bubbles.
We present results of magnetic neutron diffraction experiments on the co-doped super-oxygenated La(2-x)Sr(x)CuO(4+y) (LSCO+O) system with x=0.09. The spin-density wave has been studied and we find long-range incommensurate antiferromagnetic order bel ow T_N coinciding with the superconducting ordering temperature T_c=40 K. The incommensurability value is consistent with a hole-doping of n_h~1/8, but in contrast to non-superoxygenated La(2-x)Sr(x)CuO(4) with hole-doping close to n_h ~ 1/8 the magnetic order parameter is not field-dependent. We attribute this to the magnetic order being fully developed in LSCO+O as in the other striped lanthanum-cuprate systems.
The in-plane optical conductivity of seven La(2-x)Sr(x)CuO(4) single crystals with x between 0 and 0.15 has been studied from 30 to 295 K. All doped samples exhibit strong peaks in the far-infrared, which closely resemble those observed in Cu-O ladde rs with one-dimensional charge-ordering. The behavior with doping and temperature of the peak energy, width, and intensity allows us to conclude that we are observing charge stripes dynamics in La(2-x)Sr(x)CuO(4) on the fast time scale of infrared spectroscopy.
We present high energy X-ray diffraction studies on the structural phases of an optimal high-$T_c$ superconductor La$_{2-x}$Sr$_x$CuO$_{4+y}$ tailored by co-hole-doping. This is specifically done by varying the content of two very different chemical species, Sr and O, respectively, in order to study the influence of each. A superstructure known as staging is observed in all samples, with the staging number $n$ increasing for higher Sr dopings $x$. We find that the staging phases emerge abruptly with temperature, and can be described as a second order phase transition with transition temperatures slightly depending on the Sr doping. The Sr appears to correlate the interstitial oxygen in a way that stabilises the reproducibility of the staging phase both in terms of staging period and volume fraction in a specific sample. The structural details as investigated in this letter appear to have no direct bearing on the electronic phase separation previously observed in the same samples. This provides new evidence that the electronic phase separation is determined by the overall hole concentration rather than specific Sr/O content and concommittant structural details.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا