ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity QED engineering of spin dynamics and squeezing in a spinor gas

115   0   0.0 ( 0 )
 نشر من قبل Stuart Masson
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for engineering spin dynamics in ensembles of integer-spin atoms confined within a high-finesse optical cavity. Our proposal uses cavity-assisted Raman transitions to engineer a Dicke model for integer-spin atoms, which, in a dispersive limit, reduces to effective atom-atom interactions within the ensemble. This scheme offers a promising and flexible new avenue for the exploration of a wide range of spinor many-body physics. As an example of this, we present results showing that this method can be used to generate spin-nematic squeezing in an ensemble of spin-1 atoms. With realistic parameters the scheme should enable substantial squeezing on time scales much shorter than current experiments with spin-1 Bose-Einstein condensates.



قيم البحث

اقرأ أيضاً

47 - J.E. Reiner 2000
We present the conditional time evolution of the electromagnetic field produced by a cavity QED system in the strongly coupled regime. We obtain the conditional evolution through a wave-particle correlation function that measures the time evolution o f the field after the detection of a photon. A connection exists between this correlation function and the spectrum of squeezing which permits the study of squeezed states in the time domain. We calculate the spectrum of squeezing from the master equation for the reduced density matrix using both the quantum regression theorem and quantum trajectories. Our calculations not only show that spontaneous emission degrades the squeezing signal, but they also point to the dynamical processes that cause this degradation.
152 - C. Leroux , L. C. G. Govia , 2017
We present and analyze a method where parametric (two-photon) driving of a cavity is used to exponentially enhance the light-matter coupling in a generic cavity QED setup, with time-dependent control. Our method allows one to enhance weak-coupling sy stems, such that they enter the strong coupling regime (where the coupling exceeds dissipative rates) and even the ultra-strong coupling regime (where the coupling is comparable to the cavity frequency). As an example, we show how the scheme allows one to use a weak-coupling system to adiabatically prepare the highly entangled ground state of the ultra-strong coupling system. The resulting state could be used for remote entanglement applications.
We constructed a cavity QED system with a diamagnetic atom of 171Yb and performed projective measurements on a single nuclear spin. Since Yb has no electronic spin and has 1/2 nuclear spin, the procedure of spin polarization and state verification ca n be dramatically simplified compared with the pseudo spin-1/2 system. By enhancing the photon emission rate of the 1S0-3P1 transition, projective measurement is implemented for an atom with the measurement time of T_meas = 30us. Unwanted spin flip as well as dark counts of the detector lead to systematic error when the present technique is applied for the determination of diagonal elements of an unknown spin state, which is delta|beta|^2 < 2 * 10^-2. Fast measurement on a long-lived qubit is key to the realization of large-scale one-way quantum computing.
346 - Si-Yuan Bai , Jun-Hong An 2021
As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that $N$ two-level systems (TLSs) located near a one-dimensional waveguide can generate a SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.
147 - J. Grond , W. Potz , A. Imamoglu 2008
A scheme for probabilistic entanglement generation between two distant single electron doped quantum dots, each placed in a high-Q microcavity, by detecting strong coherent light which has interacted dispersively with both subsystems and experienced Faraday rotation due to the spin selective trion transitions is discussed. In order to assess the applicability of the scheme for distant entanglement generation between atomic qubits proposed by T.D. Ladd et al. [New J. Phys. 8, 184 (2006)] to two distant quantum dots, one needs to understand the limitations imposed by hyperfine interactions of the quantum dot spin with the nuclear spins of the material and by non-identical quantum dots. Feasibility is displayed by calculating the fidelity for Bell state generation analytically within an approximate framework. The fidelity is evaluated for a wide range of parameters and different pulse lengths, yielding a trade-off between signal and decoherence, as well as a set of optimal parameters. Strategies to overcome the effect of non-identical quantum dots on the fidelity are examined and the timescales imposed by the nuclear spins are discussed, showing that efficient entanglement generation is possible with distant quantum dots. In this context, effects due to light hole transitions become important and have to be included. The scheme is discussed for one- as well as for two-sided cavities, where one must be careful with reflected light which carries spin information. The validity of the approximate method is checked by a more elaborate semiclassical simulation which includes trion formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا