ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating stable spin squeezing by squeezed-reservoir engineering

347   0   0.0 ( 0 )
 نشر من قبل Jun-Hong An
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that $N$ two-level systems (TLSs) located near a one-dimensional waveguide can generate a SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.



قيم البحث

اقرأ أيضاً

This theoretical proposal investigates how resonant interactions occurring when a harmonic oscillator is fed with a stream of entangled qubits allow us to stabilize squeezed states of the harmonic oscillator. We show that the properties of the squeez ed state stabilized by this engineered reservoir, including the squeezing strength, can be tuned at will through the parameters of the input qubits, albeit in tradeoff with the convergence rate. We also discuss the influence of the type of entanglement in the input, from a pairwise case to a more widely distributed case. This paper can be read in two ways: either as a proposal to stabilize squeezed states, or as a step towards treating quantum systems with time-entangled reservoir inputs.
98 - P. Rabl , A. Shnirman , 2004
An experimental demonstration of a non-classical state of a nanomechanical resonator is still an outstanding task. In this paper we show how the resonator can be cooled and driven into a squeezed state by a bichromatic microwave coupling to a charge qubit. The stationary oscillator state exhibits a reduced noise in one of the quadrature components by a factor of 0.5 - 0.2. These values are obtained for a 100 MHz resonator with a Q-value of 10$^4$ to 10$^5$ and for support temperatures of T $approx$ 25 mK. We show that the coupling to the charge qubit can also be used to detect the squeezed state via measurements of the excited state population. Furthermore, by extending this measurement procedure a complete quantum state tomography of the resonator state can be performed. This provides a universal tool to detect a large variety of different states and to prove the quantum nature of a nanomechanical oscillator.
We revisit the dissipative approach to producing and stabilizing spin-squeezed states of an ensemble of $N$ two-level systems, providing a detailed analysis of two surprising yet generic features of such protocols. The first is a macroscopic sensitiv ity of the steady state to whether $N$ is even or odd. We discuss how this effect can be avoided (if the goal is parity-insensitive squeezing), or could be exploited as a new kind of sensing modality with single-spin sensitivity. The second effect is an anomalous emergent long timescale and a prethermalized regime that occurs for even weak single-spin dephasing. We also discuss a general hybrid-systems approach for implementing dissipative spin squeezing that does not require squeezed input light or complex multi-level atoms, but instead makes use of bosonic reservoir-engineering ideas. Our protocol is compatible with a variety of platforms, including trapped ions, NV defect spins coupled to diamond optomechanical crystals, and spin ensembles coupled to superconducting microwave circuits.
Recent advances illustrate the power of reservoir engineering in applications to many-body systems, such as quantum simulators based on superconducting circuits. We present a framework based on kinetic equations and noise spectra that can be used to understand both the transient and long-time behavior of many particles coupled to an engineered reservoir in a number-conserving way. For the example of a bosonic array, we show that the non-equilibrium steady state can be expressed, in a wide parameter regime, in terms of a modified Bose-Einstein distribution with an energy-dependent temperature.
115 - Wen Yi Huo , Gui Lu Long 2007
We propose a scheme for generating squeezed states in solid state circuits consisting of a nanomechanical resonator (NMR), a superconducting Cooper-pair box (CPB) and a superconducting transmission line resonator (STLR). The nonlinear interaction bet ween the NMR and the STLR can be implemented by setting the external biased flux of the CPB at certain values. The interaction Hamiltonian between the NMR and the STLR is derived by performing Fr$rmddot o$hlich transformation on the total Hamiltonian of the combined system. Just by adiabatically keeping the CPB at the ground state, we get the standard parametric down-conversion Hamiltonian. The CPB plays the role of ``nonlinear media, and the squeezed states of the NMR can be easily generated in a manner similar to the three-wave mixing in quantum optics. This is the three-wave mixing in a solid-state circuit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا