ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing cavity QED via anti-squeezing: synthetic ultra-strong coupling

153   0   0.0 ( 0 )
 نشر من قبل Luke Govia
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present and analyze a method where parametric (two-photon) driving of a cavity is used to exponentially enhance the light-matter coupling in a generic cavity QED setup, with time-dependent control. Our method allows one to enhance weak-coupling systems, such that they enter the strong coupling regime (where the coupling exceeds dissipative rates) and even the ultra-strong coupling regime (where the coupling is comparable to the cavity frequency). As an example, we show how the scheme allows one to use a weak-coupling system to adiabatically prepare the highly entangled ground state of the ultra-strong coupling system. The resulting state could be used for remote entanglement applications.



قيم البحث

اقرأ أيضاً

In this experiment, we couple a superconducting Transmon qubit to a high-impedance $645 Omega$ microwave resonator. Doing so leads to a large qubit-resonator coupling rate $g$, measured through a large vacuum Rabi splitting of $2gsimeq 910$ MHz. The coupling is a significant fraction of the qubit and resonator oscillation frequencies $omega$, placing our system close to the ultra-strong coupling regime ($bar{g}=g/omega=0.071$ on resonance). Combining this setup with a vacuum-gap Transmon architecture shows the potential of reaching deep into the ultra-strong coupling $bar{g} sim 0.45$ with Transmon qubits.
462 - S. Filipp , M. Goppl , J. M. Fink 2010
Microwave cavities with high quality factors enable coherent coupling of distant quantum systems. Virtual photons lead to a transverse exchange interaction between qubits, when they are non-resonant with the cavity but resonant with each other. We ex perimentally probe the inverse scaling of the inter-qubit coupling with the detuning from a cavity mode and its proportionality to the qubit-cavity interaction strength. We demonstrate that the enhanced coupling at higher frequencies is mediated by multiple higher-harmonic cavity modes. Moreover, in the case of resonant qubits, the symmetry properties of the system lead to an allowed two-photon transition to the doubly excited qubit state and the formation of a dark state.
We study a parametrically-driven nanomechanical resonator capacitively coupled to a microwave cavity. If the nanoresonator can be cooled to near its quantum ground state then quantum squeezing of a quadrature of the nanoresonator motion becomes feasi ble. We consider the adiabatic limit in which the cavity mode is slaved to the nanoresonator mode. By driving the cavity on its red-detuned sideband, the squeezing can be coupled into the microwave field at the cavity resonance. The red-detuned sideband drive is also compatible with the goal of ground state cooling. Squeezing of the output microwave field may be inferred using a technique similar to that used to infer squeezing of the field produced by a Josephson parametric amplifier, and subsequently, squeezing of the nanoresonator motion may be inferred. We have calculated the output field microwave squeezing spectra and related this to squeezing of the nanoresonator motion, both at zero and finite temperature. Driving the cavity on the blue-detuned sideband, and on both the blue and red sidebands, have also been considered within the same formalism.
Strong and ultra-strong light-matter coupling are remarkable phenomena of quantum electrodynamics occurring when the interaction between a matter excitation and the electromagnetic field cannot be described by usual perturbation theory. This is gener ally achieved by coupling an excitation with large oscillator strength to the confined electromagnetic mode of an optical microcavity. In this work we demonstrate that strong/ultra-strong coupling can also take place in the absence of optical confinement. We have studied the non-perturbative spontaneous emission of collective excitations in a dense two-dimensional electron gas that superradiantly decays into free space. By using a quantum model based on the input-output formalism, we have derived the linear optical properties of the coupled system and demonstrated that its eigenstates are mixed light-matter particles, like in any system displaying strong or ultra-strong light-matter interaction. Moreover, we have shown that in the ultra-strong coupling regime, i.e. when the radiative broadening is comparable to the matter excitation energy, the commonly used rotating-wave and Markov approximations yield unphysical results. Finally, the input-output formalism has allowed us to prove that Kirchhoffs law, describing thermal emission properties, applies to our system in all the light-matter coupling regimes considered in this work.
Demonstrating and exploiting the quantum nature of larger, more macroscopic mechanical objects would help us to directly investigate the limitations of quantum-based measurements and quantum information protocols, as well as test long standing questi ons about macroscopic quantum coherence. The field of cavity opto- and electro-mechanics, in which a mechanical oscillator is parametrically coupled to an electromagnetic resonance, provides a practical architecture for the manipulation and detection of motion at the quantum level. Reaching this quantum level requires strong coupling, interaction timescales between the two systems that are faster than the time it takes for energy to be dissipated. By incorporating a free-standing, flexible aluminum membrane into a lumped-element superconducting resonant cavity, we have increased the single photon coupling strength between radio-frequency mechanical motion and resonant microwave photons by more than two orders of magnitude beyond the current state-of-the-art. A parametric drive tone at the difference frequency between the two resonant systems dramatically increases the overall coupling strength. This has allowed us to completely enter the strong coupling regime. This is evidenced by a maximum normal mode splitting of nearly six bare cavity line-widths. Spectroscopic measurements of these dressed states are in excellent quantitative agreement with recent theoretical predictions. The basic architecture presented here provides a feasible path to ground-state cooling and subsequent coherent control and measurement of the quantum states of mechanical motion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا