ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantization of conductance in gapped interacting systems

127   0   0.0 ( 0 )
 نشر من قبل Sven Bachmann
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a short proof of the quantisation of the Hall conductance for gapped interacting quantum lattice systems on the two-dimensional torus. This is not new and should be seen as an adaptation of the proof of [1], simplified by making the stronger assumption that the Hamiltonian remains gapped when threading the torus with fluxes. We argue why this assumption is very plausible. The conductance is given by Berrys curvature and our key auxiliary result is that the curvature is asymptotically constant across the torus of fluxes.



قيم البحث

اقرأ أيضاً

We study charge transport for zero-temperature infinite-volume gapped lattice systems in two dimensions with short-range interactions. We show that the Hall conductance is locally computable and is the same for all systems which are in the same gapped phase. We provide a rigoro
182 - Patrik L. Ferrari 2013
In these lecture we explain why limiting distribution function, like the Tracy-Widom distribution, or limit processes, like the Airy_2 process, arise both in random matrices and interacting particle systems. The link is through a common mathematical structure on an interlacing structure, also known as Gelfand-Tsetlin pattern, that appears for specific models in both fields.
We consider a monomer-dimer system with a strong attractive dimer-dimer interaction that favors alignment. In 1979, Heilmann and Lieb conjectured that this model should exhibit a nematic liquid crystal phase, in which the dimers are mostly aligned, b ut do not manifest any translational order. We prove this conjecture for large dimer activity and strong interactions. The proof follows a Pirogov-Sinai scheme, in which we map the dimer model to a system of hard-core polymers whose partition function is computed using a convergent cluster expansion.
We relate explicitly the adiabatic curvature -- in flux space -- of an interacting Hall insulator with nondegenerate ground state to various linear response coefficients, in particular the Kubo response and the adiabatic response. The flexibility of the setup, allowing for various driving terms and currents, reflects the topological nature of the adiabatic curvature. We also outline an abstract connection between Kubo response and adiabatic response, corresponding to the fact that electric fields can be generated both by electrostatic potentials and time-dependent magnetic fields. Our treatment fits in the framework of rigorous many-body theory, thanks to the gap assumption.
231 - Umberto Lucia 2011
The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the entropy generation is maximum and, this maximum value is consequence of the stochastic order of the paths in the phase space, while, conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation at the stability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا