ﻻ يوجد ملخص باللغة العربية
We relate explicitly the adiabatic curvature -- in flux space -- of an interacting Hall insulator with nondegenerate ground state to various linear response coefficients, in particular the Kubo response and the adiabatic response. The flexibility of the setup, allowing for various driving terms and currents, reflects the topological nature of the adiabatic curvature. We also outline an abstract connection between Kubo response and adiabatic response, corresponding to the fact that electric fields can be generated both by electrostatic potentials and time-dependent magnetic fields. Our treatment fits in the framework of rigorous many-body theory, thanks to the gap assumption.
In general, linear response theory expresses the relation between a driving and a physical systems response only to first order in perturbation theory. In the context of charge transport, this is the linear relation between current and electromotive
We study the adiabatic response of open systems governed by Lindblad evolutions. In such systems, there is an ambiguity in the assignment of observables to fluxes (rates) such as velocities and currents. For the appropriate notion of flux, the formul
We provide a short proof of the quantisation of the Hall conductance for gapped interacting quantum lattice systems on the two-dimensional torus. This is not new and should be seen as an adaptation of the proof of [1], simplified by making the strong
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spect
In these lecture we explain why limiting distribution function, like the Tracy-Widom distribution, or limit processes, like the Airy_2 process, arise both in random matrices and interacting particle systems. The link is through a common mathematical