ﻻ يوجد ملخص باللغة العربية
The principle of maximum irreversible is proved to be a consequence of a stochastic order of the paths inside the phase space; indeed, the system evolves on the greatest path in the stochastic order. The result obtained is that, at the stability, the entropy generation is maximum and, this maximum value is consequence of the stochastic order of the paths in the phase space, while, conversely, the stochastic order of the paths in the phase space is a consequence of the maximum of the entropy generation at the stability.
Spatial aperiodicity occurs in various models and material s. Although today the most well-known examples occur in the area of quasicrystals, other applications might also be of interest. Here we discuss some issues related to the notion and occurren
The role of mixed states in topological quantum matter is less known than that of pure quantum states. Generalisations of topological phases appearing in pure states had received only quite recently attention in the literature. In particular, it is s
The variational method is very important in mathematical and theoretical physics because it allows us to describe the natural systems by physical quantities independently from the frame of reference used. A global and statistical approach have been i
We establish existence of order-disorder phase transitions for a class of non-sliding hard-core lattice particle systems on a lattice in two or more dimensions. All particles have the same shape and can be made to cover the lattice perfectly in a fin
A directed path in the vicinity of a hard wall exerts pressure on the wall because of loss of entropy. The pressure at a particular point may be estimated by estimating the loss of entropy if the point is excluded from the path. In this paper we dete