ترغب بنشر مسار تعليمي؟ اضغط هنا

Differentially Private Identity and Closeness Testing of Discrete Distributions

149   0   0.0 ( 0 )
 نشر من قبل Maryam Aliakbarpour
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the problems of identity and closeness testing over a discrete population from random samples. Our goal is to develop efficient testers while guaranteeing Differential Privacy to the individuals of the population. We describe an approach that yields sample-efficient differentially private testers for these problems. Our theoretical results show that there exist private identity and closeness testers that are nearly as sample-efficient as their non-private counterparts. We perform an experimental evaluation of our algorithms on synthetic data. Our experiments illustrate that our private testers achieve small type I and type II errors with sample size sublinear in the domain size of the underlying distributions.

قيم البحث

اقرأ أيضاً

Motivated by settings in which predictive models may be required to be non-discriminatory with respect to certain attributes (such as race), but even collecting the sensitive attribute may be forbidden or restricted, we initiate the study of fair lea rning under the constraint of differential privacy. We design two learning algorithms that simultaneously promise differential privacy and equalized odds, a fairness condition that corresponds to equalizing false positive and negative rates across protected groups. Our first algorithm is a private implementation of the equalized odds post-processing approach of [Hardt et al., 2016]. This algorithm is appealingly simple, but must be able to use protected group membership explicitly at test time, which can be viewed as a form of disparate treatment. Our second algorithm is a differentially private version of the oracle-efficient in-processing approach of [Agarwal et al., 2018] that can be used to find the optimal fair classifier, given access to a subroutine that can solve the original (not necessarily fair) learning problem. This algorithm is more complex but need not have access to protected group membership at test time. We identify new tradeoffs between fairness, accuracy, and privacy that emerge only when requiring all three properties, and show that these tradeoffs can be milder if group membership may be used at test time. We conclude with a brief experimental evaluation.
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices, initiating an extensive line of research in accurately and privately releasing statistics of a database. An increasing number of such databases consist of data from multiple sources, not all of which can be trusted. This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data. Despite the significance of designing algorithms that guarantee privacy and robustness (to a fraction of data being corrupted) simultaneously, even the simplest questions remain open. For the canonical problem of estimating the mean from i.i.d. samples, we introduce the first efficient algorithm that achieves both privacy and robustness for a wide range of distributions. This achieves optimal accuracy matching the known lower bounds for robustness, but the sample complexity has a factor of $d^{1/2}$ gap from known lower bounds. We further show that this gap is due to the computational efficiency; we introduce the first family of algorithms that close this gap but takes exponential time. The innovation is in exploiting resilience (a key property in robust estimation) to adaptively bound the sensitivity and improve privacy.
Practical and pervasive needs for robustness and privacy in algorithms have inspired the design of online adversarial and differentially private learning algorithms. The primary quantity that characterizes learnability in these settings is the Little stone dimension of the class of hypotheses [Ben-David et al., 2009, Alon et al., 2019]. This characterization is often interpreted as an impossibility result because classes such as linear thresholds and neural networks have infinite Littlestone dimension. In this paper, we apply the framework of smoothed analysis [Spielman and Teng, 2004], in which adversarially chosen inputs are perturbed slightly by nature. We show that fundamentally stronger regret and error guarantees are possible with smoothed adversaries than with worst-case adversaries. In particular, we obtain regret and privacy error bounds that depend only on the VC dimension and the bracketing number of a hypothesis class, and on the magnitudes of the perturbations.
There has been significant study on the sample complexity of testing properties of distributions over large domains. For many properties, it is known that the sample complexity can be substantially smaller than the domain size. For example, over a do main of size $n$, distinguishing the uniform distribution from distributions that are far from uniform in $ell_1$-distance uses only $O(sqrt{n})$ samples. However, the picture is very different in the presence of arbitrary noise, even when the amount of noise is quite small. In this case, one must distinguish if samples are coming from a distribution that is $epsilon$-close to uniform from the case where the distribution is $(1-epsilon)$-far from uniform. The latter task requires nearly linear in $n$ samples [Valiant 2008, Valian and Valiant 2011]. In this work, we present a noise model that on one hand is more tractable for the testing problem, and on the other hand represents a rich class of noise families. In our model, the noisy distribution is a mixture of the original distribution and noise, where the latter is known to the tester either explicitly or via sample access; the form of the noise is also known a priori. Focusing on the identity and closeness testing problems leads to the following mixture testing question: Given samples of distributions $p, q_1,q_2$, can we test if $p$ is a mixture of $q_1$ and $q_2$? We consider this general question in various scenarios that differ in terms of how the tester can access the distributions, and show that indeed this problem is more tractable. Our results show that the sample complexity of our testers are exactly the same as for the classical non-mixture case.
We study the basic operation of set union in the global model of differential privacy. In this problem, we are given a universe $U$ of items, possibly of infinite size, and a database $D$ of users. Each user $i$ contributes a subset $W_i subseteq U$ of items. We want an ($epsilon$,$delta$)-differentially private algorithm which outputs a subset $S subset cup_i W_i$ such that the size of $S$ is as large as possible. The problem arises in countless real world applications; it is particularly ubiquitous in natural language processing (NLP) applications as vocabulary extraction. For example, discovering words, sentences, $n$-grams etc., from private text data belonging to users is an instance of the set union problem. Known algorithms for this problem proceed by collecting a subset of items from each user, taking the union of such subsets, and disclosing the items whose noisy counts fall above a certain threshold. Crucially, in the above process, the contribution of each individual user is always independent of the items held by other users, resulting in a wasteful aggregation process, where some item counts happen to be way above the threshold. We deviate from the above paradigm by allowing users to contribute their items in a $textit{dependent fashion}$, guided by a $textit{policy}$. In this new setting ensuring privacy is significantly delicate. We prove that any policy which has certain $textit{contractive}$ properties would result in a differentially private algorithm. We design two new algorithms, one using Laplace noise and other Gaussian noise, as specific instances of policies satisfying the contractive properties. Our experiments show that the new algorithms significantly outperform previously known mechanisms for the problem.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا