ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetry-broken dissipative exchange flows in thin-film ferromagnets with in-plane anisotropy

309   0   0.0 ( 0 )
 نشر من قبل Ezio Iacocca
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Planar ferromagnetic channels have been shown to theoretically support a long-range ordered and coherently precessing state where the balance between local spin injection at one edge and damping along the channel establishes a dissipative exchange flow, sometimes referred to as a spin superfluid. However, realistic materials exhibit in-plane anisotropy, which breaks the axial symmetry assumed in current theoretical models. Here, we study dissipative exchange flows in a ferromagnet with in-plane anisotropy from a dispersive hydrodynamic perspective. Through the analysis of a boundary value problem for a damped sine-Gordon equation, dissipative exchange flows in a ferromagnetic channel can be excited above a spin current threshold that depends on material parameters and the length of the channel. Symmetry-broken dissipative exchange flows display harmonic overtones that redshift the fundamental precessional frequency and lead to a reduced spin pumping efficiency when compared to their symmetric counterpart. Micromagnetic simulations are used to verify that the analytical results are qualitatively accurate, even in the presence of nonlocal dipole fields. Simulations also confirm that dissipative exchange flows can be driven by spin transfer torque in a finite-sized region. These results delineate the important material parameters that must be optimized for the excitation of dissipative exchange flows in realistic systems.



قيم البحث

اقرأ أيضاً

Magnetization dynamics in thin film ferromagnets can be studied using a dispersive hydrodynamic formulation. The equations describing the magnetodynamics map to a compressible fluid with broken Galilean invariance parametrized by the longitudinal spi n density and a magnetic analog of the fluid velocity that define spin-density waves. A direct consequence of these equations is the determination of a magnetic Mach number. Micromagnetic simulations reveal nucleation of nonlinear structures from an impenetrable object realized by an applied magnetic field spot or a defect. In this work, micromagnetic simulations demonstrate vortex-antivortex pair nucleation from an obstacle. Their interaction establishes either ordered or irregular vortex-antivortex complexes. Furthermore, when the magnetic Mach number exceeds unity (supersonic flow), a Mach cone and periodic wavefronts are observed, which can be well-described by solutions of the steady, linearized equations. These results are reminiscent of theoretical and experimental observations in Bose-Einstein condensates, and further supports the analogy between the magnetodynamics of a thin film ferromagnet and compressible fluids. The nucleation of nonlinear structures and vortex-antivortex complexes using this approach enables the study of their interactions and effects on the stability of spin-density waves.
113 - Junwen Li , Paul M. Haney 2017
We study the optically induced torques in thin film ferromagnetic layers under excitation by circularly polarized light. We study cases both with and without Rashba spin-orbit coupling using a 4-band model. In the absence of Rashba spin-orbit couplin g, we derive an analytic expression for the optical torques, revealing the conditions under which the torque is mostly derived from optical spin transfer torque (i.e. when the torque is along the direction of optical angular momentum), versus when the torque is derived from the inverse Faraday effect (i.e. when the torque is perpendicular to the optical angular momentum). We find the optical spin transfer torque dominates provided that the excitation energy is far away from band edge transitions, and the magnetic exchange splitting is much greater than the lifetime broadening. For the case with large Rashba spin-orbit coupling and out-of-plane magnetization, we find the torque is generally perpendicular to the photon angular momentum and is ascribed to an optical Edelstein effect.
88 - Ezio Iacocca 2020
Ferromagnetic channels subject to spin injection at one extremum sustain long-range coherent textures that carry spin currents known as dissipative exchange flows (DEFs). In the weak injection regime, spin currents carried by DEFs decay algebraically and extend through the length of the channel, a regime known as spin superfluidity. Similar to fluids, these structures are prone to phase-slips that manifest as vortex-antivortex pairs. Here, we numerically study vortex shedding from DEFs excited in a magnetic nanowire with a physical obstacle. Using micromagnetic simulations, we find regimes of laminar flow and vortex shedding as a function of obstacle position tunable by the and spin injection sign and magnitude. Vortex-antivortex pairs translate forward (VF regime) or backward (VB regime) with respect to the detectors extremum, resulting in well-defined spectral features. Qualitatively similar results are obtained when temperature, anisotropy, and weak non-local dipole fields are included in the simulations. These results provide clear features associated with DEFs that may be detected experimentally in devices with nominally identical boundary conditions. Furthermore, our results suggest that obstacles can be considered as DEF control gates, opening an avenue to manipulate DEFs via physical defects.
We consider a thin ferromagnetic layer to which an external field or a current are applied along an in plane easy axis. The perpendicular hard axis anisotropy constant is large so that the out of plane magnetization component is smaller than the in p lane components. A perturbation approach is used to obtain the profile and velocity of the moving domain wall. The dynamics of the in plane components of the magnetization is governed by a reaction diffusion equation which determines the speed of the profile. We find a simple analytic expression for the out of plane magnetization showing a symmetric distortion due to the motion in addition to the asymmetric component due to the Dzyaloshinskii--Moriya interaction. The results obtained complement previous studies in which either the Dzyalozhinskii vector or the out of plane hard axis anisotropy were assumed small. In the regime studied the Walker breakdown is not observed but the reaction diffusion dynamics predicts a slowing down of the domain wall for sufficiently large magnetic field. The transition point depends on the applied field, saturation magnetization and easy axis anisotropy.
We investigate fundamental processes that govern dynamics of vortex nucleation in sub-100 nm mesoscopic magnets. We focus on a structure with broken symmetry - Pacman-like nanomagnet shape - in which we study micromagnetic behavior both by means of a simple model and numerically. We show that it is possible to establish desired vortex chirality and polarity by applying only quasi-static in-plane magnetic field along specific directions. We identify the modes of vortex nucleation that are very robust against external magnetic field noise. These vortex nucleation modes are common among wide range of sub-100 nm magnets with broken rotational symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا