ترغب بنشر مسار تعليمي؟ اضغط هنا

Domain wall dynamics for an in-plane magnetized thin film with large perpendicular hard axis anisotropy including Dzyaloshinskii-Moriya interaction

83   0   0.0 ( 0 )
 نشر من قبل M. Cristina Depassier
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a thin ferromagnetic layer to which an external field or a current are applied along an in plane easy axis. The perpendicular hard axis anisotropy constant is large so that the out of plane magnetization component is smaller than the in plane components. A perturbation approach is used to obtain the profile and velocity of the moving domain wall. The dynamics of the in plane components of the magnetization is governed by a reaction diffusion equation which determines the speed of the profile. We find a simple analytic expression for the out of plane magnetization showing a symmetric distortion due to the motion in addition to the asymmetric component due to the Dzyaloshinskii--Moriya interaction. The results obtained complement previous studies in which either the Dzyalozhinskii vector or the out of plane hard axis anisotropy were assumed small. In the regime studied the Walker breakdown is not observed but the reaction diffusion dynamics predicts a slowing down of the domain wall for sufficiently large magnetic field. The transition point depends on the applied field, saturation magnetization and easy axis anisotropy.



قيم البحث

اقرأ أيضاً

Antiferromagnetic spintronics is a promising emerging paradigm to develop high-performance computing and communications devices. From a theoretical point of view, it is important to implement simulation tools that can support a data-driven developmen t of materials having specific properties for particular applications. Here, we present a study focusing on antiferromagnetic materials having an easy-plane anisotropy and interfacial Dzyaloshinskii-Moriya interaction (IDMI). An analytical theory is developed and benchmarked against full numerical micromagnetic simulations, describing the main properties of the ground state in antiferromagnets and how it is possible to estimate the IDMI from experimental measurements. The effect of the IDMI on the electrical switching dynamics of the antiferromagnetic element is also analyzed. Our theoretical results can be used for the design of multi-terminal heavy metal/antiferromagnet memory devices.
We have studied a series of Pt/Co/M epitaxial trilayers, in which Co is sandwiched between Pt and a non magnetic layer M (Pt, Ir, Cu, Al). Using polar magneto-optical Kerr microscopy, we show that the field- induced domain wall speeds are strongly de pendent on the nature of the top layer, they increase going from M=Pt to lighter top metallic overlayers, and can reach several 100 m/s for Pt/Co/Al. The DW dynamics is consistent with the presence of chiral Neel walls stabilized by interfacial Dzyaloshinskii-Moriya interaction (DMI) whose strength increases going from Pt to Al top layers. This is explained by the presence of DMI with opposite sign at the Pt/Co and Co/M interfaces, the latter increasing in strength going towards heavier atoms, possibly due to the increasing spin-orbit interaction. This work shows that in non-centrosymmetric trilayers the domain wall dynamics can be finely tuned by engineering the DMI strength, in view of efficient devices for logic and spitronics applications.
We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. Th e DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.
We study the magnetic properties of perpendicularly magnetised Pt/Co/Ir thin films and investigate the domain wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultra-thin films. Measurements of the Co layer th ickness dependence of saturation magnetisation, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e. DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter $alpha$, we find that both $alpha$ and the velocity scaling parameter $v_{0}$ change as a function of in-plane bias field.
To stabilize the non-trivial spin textures, e.g., skyrmions or chiral domain walls in ultrathin magnetic films, an additional degree of freedom such as the interfacial Dzyaloshinskii-Moriya interaction (IDMI) must be induced by the strong spin-orbit coupling (SOC) of a stacked heavy metal layer. However, advanced approaches to simultaneously control IDMI and perpendicular magnetic anisotropy (PMA) are needed for future spin-orbitronic device implementations. Here, we show an effect of atomic-scale surface modulation on the magnetic properties and IDMI in ultrathin films composed of 5d heavy metal/ferromagnet/4d(5d) heavy metal or oxide interfaces, such as Pt/CoFeSiB/Ru, Pt/CoFeSiB/Ta, and Pt/CoFeSiB/MgO. The maximum IDMI value corresponds to the correlated roughness of the bottom and top interfaces of the ferromagnetic layer. The proposed approach for significant enhancement of PMA and IDMI through the interface roughness engineering at the atomic scale offers a powerful tool for the development of the spin-orbitronic devices with the precise and reliable controllability of their functionality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا