ﻻ يوجد ملخص باللغة العربية
Ferromagnetic channels subject to spin injection at one extremum sustain long-range coherent textures that carry spin currents known as dissipative exchange flows (DEFs). In the weak injection regime, spin currents carried by DEFs decay algebraically and extend through the length of the channel, a regime known as spin superfluidity. Similar to fluids, these structures are prone to phase-slips that manifest as vortex-antivortex pairs. Here, we numerically study vortex shedding from DEFs excited in a magnetic nanowire with a physical obstacle. Using micromagnetic simulations, we find regimes of laminar flow and vortex shedding as a function of obstacle position tunable by the and spin injection sign and magnitude. Vortex-antivortex pairs translate forward (VF regime) or backward (VB regime) with respect to the detectors extremum, resulting in well-defined spectral features. Qualitatively similar results are obtained when temperature, anisotropy, and weak non-local dipole fields are included in the simulations. These results provide clear features associated with DEFs that may be detected experimentally in devices with nominally identical boundary conditions. Furthermore, our results suggest that obstacles can be considered as DEF control gates, opening an avenue to manipulate DEFs via physical defects.
Planar ferromagnetic channels have been shown to theoretically support a long-range ordered and coherently precessing state where the balance between local spin injection at one edge and damping along the channel establishes a dissipative exchange fl
We develop a theory of the reversible switching of the magnetic state of the ferromagnet-insulator-normal metalferromagnet (FINF) nanostructure. The switching is controlled by tuning the Coulomb blockade strength via the gate voltage on the normal me
Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied
The reversal of a uniform axial magnetization in a ferromagnetic nanotube (FNT) has been predicted to nucleate and propagate through vortex domains forming at the ends. In dynamic cantilever magnetometry measurements of individual FNTs, we identify t
We investigate the formation of a new class of density-phase defects in a resonantly driven 2D quantum fluid of light. The system bistability allows the formation of low density regions containing density-phase singularities confined between high den