ﻻ يوجد ملخص باللغة العربية
We forecast the prospective constraints on the ionized gas model $f_{rm gas}(z)$ at different evolutionary epochs via the tomographic cross-correlation between kinetic Sunyaev-Zeldovich (kSZ) effect and the reconstructed momentum field at different redshifts. The experiments we consider are the Planck and CMB Stage-4 survey for CMB and the SDSS-III for the galaxy spectroscopic survey. We calculate the tomographic cross-correlation power spectrum, and use the Fisher matrix to forecast the detectability of different $f_{rm gas}(z)$ models. We find that for constant $f_{rm gas}$ model, Planck can constrain the error of $f_{rm gas}$ ($sigma_{f_{rm gas}}$) at each redshift bin to $sim 0.2$, whereas four cases of CMB-S4 can achieve $sigma_{f_{rm gas}} sim 10^{-3}$. For $f_{rm gas}(z)=f_{rm gas,0}/(1+z)$ model the error budget will be slightly broadened. We also investigate the model $f_{rm gas}(z)=f_{rm gas,0}/(1+z)^{alpha}$. Planck is unable to constrain the index of redshift evolution, but the CMB-S4 experiments can constrain the index $alpha$ to the level of $sigma_{alpha} sim 0.01$--$0.1$. The tomographic cross-correlation method will provide an accurate measurement of the ionized gas evolution at different epochs of the Universe.
We propose a new reionization probe that uses cosmic microwave background (CMB) observations; the cross-correlation between fluctuations in the CMB optical depth which probes the integrated electron density, $deltatau$, and the Compton $y$-map which
We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and Planck CMB lensing, over overlapping sky area of 16876 $rm deg^2$. The detections are significant and consistent with the expected signal of th
Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and tes
The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and
The lensing convergence measurable with future CMB surveys like CMB-S4 will be highly correlated with the clustering observed by deep photometric large scale structure (LSS) surveys such as the LSST, with cross-correlation coefficient as high as 95%.