ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the evolution of the CMB temperature with SZ measurements from Planck data

60   0   0.0 ( 0 )
 نشر من قبل Gemma Luzzi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zeldovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.

قيم البحث

اقرأ أيضاً

The Sunyaev-Zeldovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only i ndependent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range $0.07lesssim zlesssim1.4$ from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model $alpha=0.017^{+0.029}_{-0.032}$, where $T(z)=T_0(1+z)^{1-alpha}$. This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent datasets we obtain a joint constraint of $alpha=-0.001pm0.012$.
We present new constraints on cosmic variations of Newtons gravitational constant by making use of the latest CMB data from WMAP, BOOMERANG, CBI and ACBAR experiments and independent constraints coming from Big Bang Nucleosynthesis. We found that cur rent CMB data provide constraints at the 10% level, that can be improved to 3% by including BBN data. We show that future data expected from the Planck satellite could constrain G at the 1.5% level while an ultimate, cosmic variance limited, CMB experiment could reach a precision of about 0.4%, competitive with current laboratory measurements.
We present component-separated maps of the primary cosmic microwave background/kinematic Sunyaev-Zeldovich (SZ) amplitude and the thermal SZ Compton-$y$ parameter, created using data from the South Pole Telescope (SPT) and the Planck satellite. These maps, which cover the $sim$2500 square degrees of the Southern sky imaged by the SPT-SZ survey, represent a significant improvement over previous such products available in this region by virtue of their higher angular resolution (1.25 arcminutes for our highest resolution Compton-$y$ maps) and lower noise at small angular scales. In this work we detail the construction of these maps using linear combination techniques, including our method for limiting the correlation of our lowest-noise Compton-$y$ map products with the cosmic infrared background. We perform a range of validation tests on these data products to test our sky modeling and combination algorithms, and we find good performance in all of these tests. Recognizing the potential utility of these data products for a wide range of astrophysical and cosmological analyses, including studies of the gas properties of galaxies, groups, and clusters, we make these products publicly available at http://pole.uchicago.edu/public/data/sptsz_ymap and on the NASA/LAMBDA website.
64 - R. Chown , Y. Omori , K. Aylor 2018
We present three maps of the millimeter-wave sky created by combining data from the South Pole Telescope (SPT) and the Planck satellite. We use data from the SPT-SZ survey, a survey of 2540 deg$^2$ of the the sky with arcminute resolution in three ba nds centered at 95, 150, and 220 GHz, and the full-mission Planck temperature data in the 100, 143, and 217 GHz bands. A linear combination of the SPT-SZ and Planck data is computed in spherical harmonic space, with weights derived from the noise of both instruments. This weighting scheme results in Planck data providing most of the large-angular-scale information in the combined maps, with the smaller-scale information coming from SPT-SZ data. A number of tests have been done on the maps. We find their angular power spectra to agree very well with theoretically predicted spectra and previously published results.
We present an improved analysis of the final dataset from the QUaD experiment. Using an improved technique to remove ground contamination, we double the effective sky area and hence increase the precision of our CMB power spectrum measurements by ~30 % versus that previously reported. In addition, we have improved our modeling of the instrument beams and have reduced our absolute calibration uncertainty from 5% to 3.5% in temperature. The robustness of our results is confirmed through extensive jackknife tests and by way of the agreement we find between our two fully independent analysis pipelines. For the standard 6-parameter LCDM model, the addition of QUaD data marginally improves the constraints on a number of cosmological parameters over those obtained from the WMAP experiment alone. The impact of QUaD data is significantly greater for a model extended to include either a running in the scalar spectral index, or a possible tensor component, or both. Adding both the QUaD data and the results from the ACBAR experiment, the uncertainty in the spectral index running is reduced by ~25% compared to WMAP alone, while the upper limit on the tensor-to-scalar ratio is reduced from r < 0.48 to r < 0.33 (95% c.l). This is the strongest limit on tensors to date from the CMB alone. We also use our polarization measurements to place constraints on parity violating interactions to the surface of last scattering, constraining the energy scale of Lorentz violating interactions to < 1.5 x 10^{-43} GeV (68% c.l.). Finally, we place a robust upper limit on the strength of the lensing B-mode signal. Assuming a single flat band power between l = 200 and l = 2000, we constrain the amplitude of B-modes to be < 0.57 micro-K^2 (95% c.l.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا