ﻻ يوجد ملخص باللغة العربية
We study the stochastic homogenization for a Cauchy problem for a first-order Hamilton-Jacobi equation whose operator is not coercive w.r.t. the gradient variable. We look at Hamiltonians like $H(x,sigma(x)p,omega)$ where $sigma(x)$ is a matrix associated to a Carnot group. The rescaling considered is consistent with the underlying Carnot group structure, thus anisotropic. We will prove that under suitable assumptions for the Hamiltonian, the solutions of the $varepsilon$-problem converge to a deterministic function which can be characterized as the unique (viscosity) solution of a suitable deterministic Hamilton-Jacobi problem.
Let $(Omega, mu)$ be a probability space endowed with an ergodic action, $tau$ of $( {mathbb R} ^n, +)$. Let $H(x,p; omega)=H_omega(x,p)$ be a smooth Hamiltonian on $T^* {mathbb R} ^n$ parametrized by $omegain Omega$ and such that $ H(a+x,p;tau_aomeg
We consider the specified stochastic homogenization of first order evolutive Hamilton-Jacobi equations on a very simple junction, i.e the real line with a junction at the origin. Far from the origin, we assume that the considered hamiltonian is close
Let $u^varepsilon$ and $u$ be viscosity solutions of the oscillatory Hamilton-Jacobi equation and its corresponding effective equation. Given bounded, Lipschitz initial data, we present a simple proof to obtain the optimal rate of convergence $mathca
We study the singular locus of solutions to Hamilton-Jacobi equations with a Hamiltonian independent of $u$. In a previous paper, we proved that the singular locus is what we call a balanced split locus. In this paper, we find and classify all balanc
Sharp temporal decay estimates are established for the gradient and time derivative of solutions to a viscous Hamilton-Jacobi equation as well the associated Hamilton-Jacobi equation. Special care is given to the dependence of the estimates on the vi