ﻻ يوجد ملخص باللغة العربية
At the 33rd ICRC, we reported the possible detection of solar gamma rays by a ground level detector and later re-examined this event. On March 7, 2011, the solar neutron telescope (SNT) located at Mt. Sierra Negra, Mexico (4,600 m) observed enhancements of the counting rate from 19:49 to 20:02 UT and from 20:50 to 21:01 UT. The statistical significance was 9.7sigma and 8.5sigma, respectively. This paper discusses the possibility of using this mountain detector to detect solar gamma rays. In association with this event, the solar neutron detector SEDA-FIB onboard the International Space Station has also detected solar neutrons with a statistical significance of 7.5sigma. The FERMI-LAT detector also observed high-energy gamma rays from this flare with a statistical significance of 6.7sigma. We thus attempted to make a unified model to explain this data. In this paper, we report on another candidate for solar gamma rays detected on September 25th, 2011 by the SNT located in Tibet (4,300 m) from 04:37 to 04:47 UT with a statistical significance of 8.0sigma (by the Li-Ma method).
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region
The Fermi-Large Area Telescope (LAT) detection of the X8.2 GOES class solar flare of 2017 September 10 provides for the first time observations of a long duration high-energy gamma-ray flare associated with a Ground Level Enhancement (GLE). The >100
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration
The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This sensitivity has enabled the LAT to detect gamma-ray emission from the Sun during quiescent periods from pions
In the solar flare observed on June 3, 2012, high energy gamma-rays and neutrons were observed. The event includes a remarkable feature of a high neutron/gamma-ratio in the secondary particles. We have examined whether this high n/$gamma$-ratio can b