ترغب بنشر مسار تعليمي؟ اضغط هنا

Fermi-LAT observations of the 2017 September 10$^{th}$ solar flare

74   0   0.0 ( 0 )
 نشر من قبل Nicola Omodei
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi-Large Area Telescope (LAT) detection of the X8.2 GOES class solar flare of 2017 September 10 provides for the first time observations of a long duration high-energy gamma-ray flare associated with a Ground Level Enhancement (GLE). The >100 MeV emission from this flare lasted for more than 12 hours covering both the impulsive and extended phase. We present the localization of the gamma-ray emission and find that it is consistent with the active region (AR) from which the flare occurred over a period lasting more than 6 hours contrary to what was found for the 2012 March 7 flares. The temporal variation of the proton index inferred from the gamma-ray data seems to suggest two phases in acceleration of the proton population. Based on timing arguments we interpret the second phase to be tied to the acceleration mechanism powering the GLE, believed to be particle acceleration at a coronal shock driven by the CME.



قيم البحث

اقرأ أيضاً

We present the first Fermi - Large Area Telescope (LAT) solar flare catalog covering the 24 th solar cycle. This catalog contains 45 Fermi -LAT solar flares (FLSFs) with emission in the gamma-ray energy band (30 MeV - 10 GeV) detected with a signific ance greater than 5 sigma over the years 2010-2018. A subsample containing 37 of these flares exhibit delayed emission beyond the prompt-impulsive hard X-ray phase with 21 flares showing delayed emission lasting more than two hours. No prompt-impulsive emission is detected in four of these flares. We also present in this catalog the observations of GeV emission from 3 flares originating from Active Regions located behind the limb (BTL) of the visible solar disk. We report the light curves, spectra, best proton index and localization (when possible) for all the FLSFs. The gamma-ray spectra is consistent with the decay of pions produced by >300 MeV protons. This work contains the largest sample of high-energy gamma-ray flares ever reported and provides the unique opportunity to perform population studies on the different phases of the flare and thus allowing to open a new window in solar physics.
We report the first science results from the newly completed Expanded Owens Valley Solar Array (EOVSA), which obtained excellent microwave imaging spectroscopy observations of SOL2017-09-10, a classic partially-occulted solar limb flare associated wi th an erupting flux rope. This event is also well-covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) in hard X-rays (HXRs). We present an overview of this event focusing on microwave and HXR data, both associated with high-energy nonthermal electrons, and discuss them within the context of the flare geometry and evolution revealed by extreme ultraviolet (EUV) observations from the Atmospheric Imaging Assembly aboard the Solar Dynamics Observatory (SDO/AIA). The EOVSA and RHESSI data reveal the evolving spatial and energy distribution of high-energy electrons throughout the entire flaring region. The results suggest that the microwave and HXR sources largely arise from a common nonthermal electron population, although the microwave imaging spectroscopy provides information over a much larger volume of the corona.
In this multi-instrument paper, we search for evidence of sustained magnetic reconnection far beyond the impulsive phase of the X8.2-class solar flare on 2017 September 10. Using Hinode/EIS, CoMP, SDO/AIA, K-Cor, Hinode/XRT, RHESSI, and IRIS, we stud y the late-stage evolution of the flare dynamics and topology, comparing signatures of reconnection with those expected from the standard solar flare model. Examining previously unpublished EIS data, we present the evolution of non-thermal velocity and temperature within the famous plasma sheet structure, for the first four hours of the flares duration. On even longer time scales, we use Differential Emission Measures and polarization data to study the longevity of the flares plasma sheet and cusp structure, discovering that the plasma sheet is still visible in CoMP linear polarization observations on 2017 September 11, long after its last appearance in EUV. We deduce that magnetic reconnection of some form is still ongoing at this time - 27 hours after flare onset.
We report hard X-ray and gamma-ray observations of the impulsive phase of the SOL2017-09-06T11:55 X9.3 solar flare. We focus on a high-energy part of the spectrum, >100 keV, and perform time resolved spectral analysis for a portion of the impulsive p hase, recorded by the Konus-Wind experiment, that displayed prominent gamma-ray emission. Given a variety of possible emission components contributing to the gamma-ray emission, we employ a Bayesian inference to build the most probable fitting model. The analysis confidently revealed contributions from nuclear deexcitation lines, electron-positron annihilation line at 511 keV, and a neutron capture line at 2.223 MeV along with two components of the bremsstrahlung continuum. The revealed time evolution of the spectral components is particularly interesting. The low-energy bremsstrahlung continuum shows a soft-hard-soft pattern typical for impulsive flares, while the high-energy one shows a persistent hardening at the course of the flare. The neutron capture line emission shows an unusually short time delay relative to the nuclear deexcitation line component, which implies that the production of neutrons was significantly reduced soon after the event onset. This in turn may imply a prominent softening of the accelerated proton spectrum at the course of the flare, similar to the observed softening of the low-energy component of the accelerated electrons responsible for the low-energy bremsstrahlung continuum. We discuss possible physical scenarios, which might result in the obtained relationships between these gamma-ray components.
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region 12673 that appeared on September 4 and lasted until September 10, 2017, with intensity higher than > M2. In nine of those solar flares, the SEDA-FIB detected clear signals of solar neutrons, along with five minor excesses. Among these events, we focus on two associated with the flares of X2.2 (SOL2017-09-06) and X8.2 (SOL2017-09-10) that share a common feature: a process of accelerating electrons into high energies as clearly recorded by the FERMI-GBM detector. These events may provide us with useful information to elucidate the ion acceleration process. The X8.2 event was a limb flare that proved adequate for fixing the parameters needed to explain the process of particle acceleration into high energies. According to our analysis, the electron acceleration process may possibly be explained by the shock acceleration model. However, we found that it would be difficult to explain the simultaneous acceleration of ions with electrons, unless the ions were preheated prior to their rapid acceleration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا