ﻻ يوجد ملخص باللغة العربية
In the solar flare observed on June 3, 2012, high energy gamma-rays and neutrons were observed. The event includes a remarkable feature of a high neutron/gamma-ratio in the secondary particles. We have examined whether this high n/$gamma$-ratio can be explained by simulation. As a result of simulations using the GEANT4 program, the high n/$gamma$-ratio may be reproduced for the case that helium and other heavy ions were dominantly accelerated in the flare.
We report on the Fermi-LAT detection of high-energy emission from the behind-the-limb (BTL) solar flares that occurred on 2013 October 11, and 2014 January 6 and September 1. The Fermi-LAT observations are associated with flares from active regions o
The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, CMEs, eruptive filaments, and various scales of jets. The different kinds of flares may have different character
We study the solar eruptive event on 2017 September 10 that produced long-lasting $>$100 MeV $gamma$-ray emission and a ground level enhancement (GLE72). The origin of the high-energy ions producing late-phase gamma-ray emission (LPGRE) is still an o
Little is known about the origin of the high-energy and sustained emission from solar Long-Duration Gamma-Ray Flares (LDGRFs), identified with the Compton Gamma Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/Larg
We characterize and provide a catalog of thirty >100 MeV sustained gamma-ray emission (SGRE) events observed by Fermi LAT. These events are temporally and spectrally distinct from the associated solar flares. Their spectra are consistent with decay o