ﻻ يوجد ملخص باللغة العربية
We introduce a class of generalized Lipkin-Meshkov-Glick (gLMG) models with su$(m)$ interactions of Haldane-Shastry type. We have computed the partition function of these models in closed form by exactly evaluating the partition function of the restriction of a spin chain Hamiltonian of Haldane-Shastry type to subspaces with well-defined magnon numbers. As a byproduct of our analysis, we have obtained strong numerical evidence of the Gaussian character of the level density of the latter restricted Hamiltonians, and studied the distribution of the spacings of consecutive unfolded levels. We have also discussed the thermodynamic behavior of a large family of su(2) and su(3) gLMG models, showing that it is qualitatively similar to that of a two-level system.
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p
Lipkin model of arbitrary particle-number N is studied in terms of exact differential-operator representation of spin-operators from which we obtain the low-lying energy spectrum with the instanton method of quantum tunneling. Our new observation is
The Lipkin-Meshkov-Glick (LMG) model was devised to test the validity of different approximate formalisms to treat many-particle systems. The model was constructed to be exactly solvable and yet non-trivial, in order to capture some of the main featu
The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relev
We introduce the notion of Mixed Symmetry Quantum Phase Transition (MSQPT) as singularities in the transformation of the lowest-energy state properties of a system of identical particles inside each permutation symmetry sector $mu$, when some Hamilto