ﻻ يوجد ملخص باللغة العربية
The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relevant and show that their entanglement dynamics are very different. A semiclassical analysis is used to compute the one-tangle which measures the entanglement of one spin with all the others, whereas the frozen-spin approximation allows us to compute the concurrence using its mapping onto the spin squeezing parameter.
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p
The Lipkin-Meshkov-Glick (LMG) model was devised to test the validity of different approximate formalisms to treat many-particle systems. The model was constructed to be exactly solvable and yet non-trivial, in order to capture some of the main featu
Lipkin model of arbitrary particle-number N is studied in terms of exact differential-operator representation of spin-operators from which we obtain the low-lying energy spectrum with the instanton method of quantum tunneling. Our new observation is
We introduce a class of generalized Lipkin-Meshkov-Glick (gLMG) models with su$(m)$ interactions of Haldane-Shastry type. We have computed the partition function of these models in closed form by exactly evaluating the partition function of the restr
We establish a set of nonequilibrium quantum phase transitions in the Lipkin-Meshkov-Glick model under monochromatic modulation of the inter-particle interaction. We show that the external driving induces a rich phase diagram that characterizes the m