ﻻ يوجد ملخص باللغة العربية
The Lipkin-Meshkov-Glick (LMG) model was devised to test the validity of different approximate formalisms to treat many-particle systems. The model was constructed to be exactly solvable and yet non-trivial, in order to capture some of the main features of real physical systems. In the present contribution, we explicitly review the fact that different many-body approximations commonly used in different fields in physics clearly fail to describe the exact LMG solution. With similar assumptions as those adopted for the LMG model, we propose a new Hamiltonian based on a general two-body interaction. The new model (Extended LMG) is not only more general than the original LMG model and, therefore, with a potentially larger spectrum of applicability, but also the physics behind its exact solution can be much better captured by common many-body approximations. At the basis of this improvement lies a new term in the Hamiltonian that depends on the number of constituents and polarizes the system; the associated symmetry breaking is discussed, together with some implications for the study of more realistic systems.
In this work we discuss the existence of time-translation symmetry breaking in a kicked infinite-range-interacting clean spin system described by the Lipkin-Meshkov-Glick model. This Floquet time crystal is robust under perturbations of the kicking p
The Lipkin-Meshkov-Glick (LMG) model describes critical systems with interaction beyond the first-neighbor approximation. Here we address the characterization of LMG systems, i.e. the estimation of anisotropy, and show how criticality may be exploite
The dynamics of the one-tangle and the concurrence is analyzed in the Lipkin-Meshkov-Glick model which describes many physical systems such as the two-mode Bose-Einstein condensates. We consider two different initial states which are physically relev
Lipkin model of arbitrary particle-number N is studied in terms of exact differential-operator representation of spin-operators from which we obtain the low-lying energy spectrum with the instanton method of quantum tunneling. Our new observation is
We introduce a class of generalized Lipkin-Meshkov-Glick (gLMG) models with su$(m)$ interactions of Haldane-Shastry type. We have computed the partition function of these models in closed form by exactly evaluating the partition function of the restr