ﻻ يوجد ملخص باللغة العربية
We derive the SFH of MS galaxies showing how the SFH peak of a galaxy depends on its seed mass at e.g. z=5. Following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could results in less efficient gas inflows on the galaxies and thus could be at the origin of the limited stellar mass growth. As a result, galaxies on the MS can enter the passive region of the UVJ diagram while still forming stars. The ability of the classical analytical SFHs to retrieve the SFR of galaxies from SED fitting is studied. Due to mathematical limitations, the exp-declining and delayed SFH struggle to model high SFR which starts to be problematic at z>2. The exp-rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but not low values such as those expected at low redshift for massive galaxies. We show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial gradient of age, parallel to the MS which is not exhibited by a simulated sample. This gradient is also produced on real data, using a sample of GOODS-South galaxies at 1.5<z<1.2. We propose a SFH composed of a delayed form to model the bulk of stellar population plus a flexibility in the recent SFH. This SFH provides very good estimates of the SFR of MS, starbursts, and rapidly quenched galaxies at all z. Furthermore, used on the GOODS-South sample, the age gradient disappears, showing its dependency on the SFH assumption made to perform the SED fitting.
We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of HII galaxies, d
We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of Halph
Using mid-infrared star formation rate and stellar mass indicators in $textit{WISE}$, we construct and contrast the relation between star formation rate and stellar mass for isolated and paired galaxies. Our samples comprise a selection of AMIGA (iso
We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator,
We use high-resolution continuum images obtained at 870microns with the Atacama Large Millimeter Array (ALMA) to probe the surface density of star-formation in z~2 galaxies and study the different physical properties between galaxies within and above