ﻻ يوجد ملخص باللغة العربية
We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of HII galaxies, dwarf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z<0.4, cross-matched with photometric catalogs from GALEX, SDSS, UKIDSS and WISE. We modeled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies we find that HII galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100-1000 Myr) and a recent population with ages < 10 Myr. HII galaxies agree with the SFR-M relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR-M demonstrated not to be a good tool to provide additional information about the SFH of HII galaxies, as different SFH present a similar behavior with a spread of <0.1 dex.
We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator,
We derive the SFH of MS galaxies showing how the SFH peak of a galaxy depends on its seed mass at e.g. z=5. Following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundan
In this paper we investigate the impact of different star formation histories (SFHs) on the relation between stellar mass M$_{*}$ and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift zspec>2 drawn from the VIM
We explore star-formation histories (SFHs) of galaxies based on the evolution of the star-formation rate stellar mass relation (SFR-M*). Using data from the FourStar Galaxy Evolution Survey (ZFOURGE) in combination with far-IR imaging from the Spitze
Context. There are typically two different approaches to infer the mass formation history (MFH) of a given galaxy from its luminosity in different bands. Non-parametric methods are known for their flexibility and accuracy, while parametric models are