ترغب بنشر مسار تعليمي؟ اضغط هنا

HI study of isolated and pair galaxies: the MIR SFR-M$star$ sequence

78   0   0.0 ( 0 )
 نشر من قبل Jamie Bok Miss
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using mid-infrared star formation rate and stellar mass indicators in $textit{WISE}$, we construct and contrast the relation between star formation rate and stellar mass for isolated and paired galaxies. Our samples comprise a selection of AMIGA (isolated galaxies) and pairs of ALFALFA galaxies with HI detections such that we can examine the relationship between HI content (gas fraction, HI deficiency) and galaxy location on the main sequence (MS) in these two contrasting environments. We derive for the first time an HI scaling relation for isolated galaxies using $textit{WISE}$ stellar masses, and thereby establish a baseline predictor of HI content that can be used to assess the impact of environment on HI content when compared with samples of galaxies in different environments. We use this updated relation to determine the HI deficiency of both our paired and isolated galaxies. Across all the quantities examined as a function of environment in this work (MS location, gas fraction, and HI deficiency), the AMIGA sample of isolated galaxies is found to have the lower dispersion: $sigma_{rm{AMIGA}} = 0.37$ versus $sigma_{rm{PAIRS}} = 0.55$ on the MS, $sigma_{rm{AMIGA}} = 0.44$ versus $sigma_{rm{PAIRS}} = 0.54$ in gas fraction, and $sigma_{rm{AMIGA}} = 0.28$ versus $sigma_{rm{PAIRS}} = 0.34$ in HI deficiency. We also note fewer isolated quiescent galaxies, 3 (0.6$%$), compared to 12 (2.3$%$) quiescent pair members. Our results suggest the differences in scatter measured between our samples are environment driven. Galaxies in isolation behave relatively predictably, and galaxies in more densely populated environments adopt a more stochastic behaviour, across a broad range of quantities.



قيم البحث

اقرأ أيضاً

We derive the SFH of MS galaxies showing how the SFH peak of a galaxy depends on its seed mass at e.g. z=5. Following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundan ce matching, these masses correspond to hot and massive DM halos which state could results in less efficient gas inflows on the galaxies and thus could be at the origin of the limited stellar mass growth. As a result, galaxies on the MS can enter the passive region of the UVJ diagram while still forming stars. The ability of the classical analytical SFHs to retrieve the SFR of galaxies from SED fitting is studied. Due to mathematical limitations, the exp-declining and delayed SFH struggle to model high SFR which starts to be problematic at z>2. The exp-rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but not low values such as those expected at low redshift for massive galaxies. We show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial gradient of age, parallel to the MS which is not exhibited by a simulated sample. This gradient is also produced on real data, using a sample of GOODS-South galaxies at 1.5<z<1.2. We propose a SFH composed of a delayed form to model the bulk of stellar population plus a flexibility in the recent SFH. This SFH provides very good estimates of the SFR of MS, starbursts, and rapidly quenched galaxies at all z. Furthermore, used on the GOODS-South sample, the age gradient disappears, showing its dependency on the SFH assumption made to perform the SED fitting.
We perform a stacking analysis of the HI spectra from the Arecibo Legacy Fast ALFA (ALFALFA) survey for optically-selected local galaxies from the Sloan Digital Sky Survey (SDSS) to study the average gas fraction of galaxies at fixed stellar mass ($M _*$) and star formation rate (SFR). We first confirm that the average gas fraction strongly depends on the stellar mass and SFR of host galaxies; massive galaxies tend to have a lower gas fraction, and actively star-forming galaxies show higher gas fraction, which is consistent with many previous studies. Then we investigate the morphological dependence of the HI gas mass fraction at fixed $M_*$ and SFR to minimize the effects of these parameters. We use three morphological classifications based on parametric indicator (S{e}rsic index), non-parametric indicator (C-index), and visual inspection (smoothness from the Galaxy Zoo 2 project) on the optical image. We find that there is no significant morphological dependence of the HI gas mass fraction at fixed $M_*$ and SFR when we use C-index. In comparison, there exists a hint of diminishment in the HI gas mass fraction for smooth galaxies compared with non-smooth galaxies. We find that the visual smoothness is sensitive to the existence of small-scale structures in a galaxy. Our result suggests that even at fixed $M_*$ and SFR, the presence of such small-scale structures (seen in the optical image) is linked to their total HI gas content.
We discuss the implications of assuming different star formation histories (SFH) in the relation between star formation rate (SFR) and mass derived by the spectral energy distribution fitting (SED). Our analysis focuses on a sample of HII galaxies, d warf starburst galaxies spectroscopically selected through their strong narrow emission lines in SDSS DR13 at z<0.4, cross-matched with photometric catalogs from GALEX, SDSS, UKIDSS and WISE. We modeled and fitted the SEDs with the code CIGALE adopting different descriptions of SFH. By adding information from different independent studies we find that HII galaxies are best described by episodic SFHs including an old (10 Gyr), an intermediate age (100-1000 Myr) and a recent population with ages < 10 Myr. HII galaxies agree with the SFR-M relation from local star-forming galaxies, and only lie above such relation when the current SFR is adopted as opposed to the average over the entire SFH. The SFR-M demonstrated not to be a good tool to provide additional information about the SFH of HII galaxies, as different SFH present a similar behavior with a spread of <0.1 dex.
Observations have revealed that disturbances in the cold neutral atomic hydrogen (HI) in galaxies are ubiquitous, but the reasons for these disturbances remain unclear. While some studies suggest that asymmetries in integrated HI spectra (global HI a symmetry) are higher in HI-rich systems, others claim that they are preferentially found in HI-poor galaxies. In this work, we utilise the ALFALFA and xGASS surveys, plus a sample of post-merger galaxies, to clarify the link between global HI asymmetry and the gas properties of galaxies. Focusing on star-forming galaxies in ALFALFA, we find that elevated global HI asymmetry is not associated with a change in the HI content of a galaxy, and that only the galaxies with the highest global HI asymmetry show a small increase in specific star-formation rate (sSFR). However, we show that the lack of a trend with HI content is because ALFALFA misses the gas-poor tail of the star-forming main-sequence. Using xGASS to obtain a sample of star-forming galaxies that is representative in both sSFR and HI content, we find that global HI asymmetric galaxies are typically more gas-poor than symmetric ones at fixed stellar mass, with no change in sSFR. Our results highlight the complexity of the connection between galaxy properties and global HI asymmetry. This is further confirmed by the fact that even post-merger galaxies show both symmetric and asymmetric HI spectra, demonstrating that merger activity does not always lead to an asymmetric global HI spectrum.
We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of Halph a excess sources reaches 37-40% for galaxies with stellar masses log10(M*/Msun) ~ 9-10, and decreases to <20% at log10(M*/Msun) ~ 10.7. At higher stellar masses, however, the trend reverses, although this is likely due to AGN contamination. We derive star formation rates (SFR) and specific SFR (sSFR) from the inferred Halpha equivalent widths (EW) of our Halpha excess galaxies. We show, for the first time, that the Halpha excess galaxies clearly have a bimodal distribution on the SFR-M* plane: they lie on the main sequence of star formation (with log10(sSFR/yr^{-1})<-8.05) or in a starburst cloud (with log10(sSFR/yr^{-1}) >-7.60). The latter contains ~15% of all the objects in our sample and accounts for >50% of the cosmic SFR density at z=3.9-4.9, for which we derive a robust lower limit of 0.066 Msun yr^{-1} Mpc^{-3}. Finally, we identify an unusual >50sigma overdensity of z=3.9-4.9 galaxies within a 0.20 x 0.20 sq. arcmin region. We conclude that the SMUVS unique combination of area and depth at mid-IR wavelengths provides an unprecedented level of statistics and dynamic range which are fundamental to reveal new aspects of galaxy evolution in the young Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا